SmallBASIC Guide

A User’s Guide for SmallBASIC
Edition Alpha, for SmallBASIC Version 0.9.0
August 2003.

Nicholas D. Christopoulos

Copyright (©) 2000, 2001, 2002, 2003, 2004 SmallBASIC Project.
Copyright (©) 1991, 2004 Free Software Foundation, Inc.

This is Edition Alpha of SmallBASIC Guide: A User’s Guide for SmallBASIC, for the 0.9.0
(or later) version of the SmallBASIC language.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU General Public License”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

a. “A GNU Manual”
b. “You have freedom to copy and modify this GNU Manual, like GNU software.”

The SmallBASIC Team

Nicholas Christopoulos
nereus@freemail.gr, Athens - Greece.
Original author and project manager.

Chris Warren-Smith

cwarrens@twpo.com.au, Adelaide - South Australia.
Franklin’s eBookMan version, and SB developer
http://www.twpo.com.au/cwarrens/ebm

Laurent Poujoulat
lpoujoulat@wanadoo.fr, Bondy - France.
PalmOS 5 version, and SB developer

Tim Corcoran
tim@whdl.com, USA.
Sony Clie version, and SB developer

Earle F. Philhower
earle@ziplabel.com, USA.
Helio (VTOS) version
http://wwuw.ziplabel.com/

Web Site
http://smallbasic.sf.net

Forum
http://smallbasic.sf.net/forum

mailto:nereus@freemail.gr
mailto:cwarrens@twpo.com.au
mailto:lpoujoulat@wanadoo.fr
mailto:tim@whdl.com
mailto:earle@ziplabel.com

Table of Contents

1 Introduction......................., 1
1.1 Welcome to SmallBASIC 1
1.1.1 About BASIC 1

1.1.2 About SmallBASIC............................. 1

1.1.2.1 Purpose..........oiiiiiiiiiiii 1

1.1.2.2 Cross-platform......................... 2

1.2 Useful notes for beginners................................ 2
1.2.1 What we must already know..................... 2

1.2.2 How toread the syntax 4

1.3 Running SB Interactively 5
1.4 Running SB 6
1.4.1 Unix script executables.......................... 7

2 Thelanguage............covviiinnnn.. 8
2.1 Constants and Variables 8
2.1.1 Variablenames 8

2.1.2 About the dollar-symbol 8

2.1.3 Integers........oooniiniin 8

214 Reals.....oo 9

2,15 SETINGS. .o v 9

2.1.6 Constantsooiiiiiiii 9

2.2 System Variables........... 9
2.3 OPEeratorsuiei 10
2.4 Special Charactersc.coo ... 11
2.5 The OPTION keywordciiiiiin ... 11
251 Run-Time........ i, 11

2.5.2 Compile-Time........... 12

2.6 Meta-commands 12
2.7 Arrays and Matrices. ... 13
2.8 Nested arraysoovernr 14
2.9 Theoperator IN 14
2.10 The operator LIKE........, 15
2.11 The pseudo-operator << ..., 15
2.12 Subroutines and Functions............................. 16
2.13 Single-line Functions, 18
2.14 Nested procedures and functions 18
2.15 Units (SB libraries) ... 19
2.16 The pseudo-operators ++/—/p=......................... 20
2.17 The USE keyword 20
2.18 The DO keyword 20

3 Programming Tips........................ 22
3.1 Using LOCAL variables i .. 22
3.2 Loops and variables 22
3.3 Loops and expressionsovuiieiin i 23
4 Commands..........c.iiininnnnnnnnns 24
5 System.........oiiiiiiiiiiiiiiiiiiiitanas 33
6 Graphics& Sound........................ 38
6.1 The colors . .. oo 38
6.2 The pointS.ot 38
6.3 The STEP keyword i 38
6.4 The ’aspect’ parameterciiiiiian... 38
6.5 The FILLED keyword 38
6.6 Graphics Commandscooiiiiien... 38
7 Miscellaneouscovviiiienn... 43
8 Filesystem................ 45
8.1 Special Device Names, 45
8.2 File System Commands..................ooviiieei.... 45
9 Mathematicsiiii.... 50
9.1 Unit convertion 50
9.2 Round......... ... 50
9.3 Trigonometryo i 51
9.4 Logarithms 52
9.5 Statistics 52
9.6 Equations 53
10 2D Algebra..............cciiiiiiii.... 55
10.1 2D & 3D graphics transformations...................... 55
11 Strings......ccoeiiiiiiiiinnnnneeennnns 58
12 Console..........iiiiiiiinnnnnnnns 63
12.1 Supported console codes 63
12.2 Console Commandscoovniiineineennann... 63
Appendix A Interactive Mode 66

A.1 Interactive Mode Commandsovuene. ... 66

ii

Appendix B MySQL Module 68
Appendix C GDBM Module................. 69
Appendix D Limits.......................... 70
D.1 Typical 32bit system 70
D.2 PalmOS (Typical 16bit system)......................... 70
Appendix E Writting Modules............... 71
E.1 Variables AP 71
E11 Gereric.......ooooiiiii 72
E.1.2 Real Numbers...................... 73
E.1.3 Integer Numbers.............................. 73
E.14 Strings ... 73
E15 Arrays ... 74
E.2 Typical Module Source............ 74
E.3 Typical Module Makefile 7
Appendix F Glossarycovvnn.. 79
Appendix G GNU Free Documentation License
.. 82
G.1 ADDENDUM: How to use this License for your documents
... 87
Appendix H Command Index................ 88

iii

Chapter 1: Introduction 1

1 Introduction

1.1 Welcome to SmallBASIC

SmallBASIC (SB) is a simple computer language, featuring a clean interface, strong math-
ematics and string library. We feel it is an ideal tool for experimenting with simple algo-
rithms, for having fun.

1.1.1 About BASIC

BASIC is a very simple language and it is a perfect tool for calculations or utilities. Its name
stands for (B)eginners (A)ll-purpose (S)ymbolic (I)nstruction (C)ode. It was developed by
John Kemeny and Thomas Kurtz at Dartmouth College during the middle of 1960, and
was one of the most popular languages for several decades.

However, at the last decades it was upgraded to survive on the new programming environ-
ments. It was modernized and that was hard required.

In the first upgrade, BASIC was transformed to a structured language. As far, as [known,
the first structured BASIC was the QuickBASIC (QB), a Microsoft product. Several struc-
tured dialects was followed from other companies.

In the second upgrade, BASIC was transformed to an (almost) object-oriented language.
As far, as I known, the first OO BASIC was the VisualBASIC (VB), a Microsoft product.
In that stage BASIC was become very problematic, since, Microsoft was introduced Ob-
jectPascal and C++ technologies in a language with very different design and purpose of
existance!

Anyway, we strongly disagree with the "new" feautures and the way that are implemented
in VB. Every language created for specified purposes, BASIC for beginners, C for low-
level programming, Prolog for Al, etc. VB it is not object-oriented nor a simple language
(anymore), but it is a bad designed mix of other languages.

1.1.2 About SmallBASIC

SmallBASIC was created by Nicholas Christopoulos in May of 2000, to be used as an
advanced calculator for his Palm IIIx handheld device. In Jan of 2001, SB moved to the
web as an GPL project.

Because SB was designed for that small device (Palm IIIx), and because was small compared
to desktop-computer BASICs, it takes the prefix 'Small’.

SB is a structured version of BASIC and includes a lot of new feautures such matrices,
algebra functions, powerfull string library, etc. A lot of its feautures does not exists in the
most languages, but on the other hand, SB does not supports GUI and other feautures that
are common in today languages.

Chapter 1: Introduction 2

1.1.2.1 Purpose

BASIC is easy to learn and simple to use, and this is the spirit of SB. Instead of other
BASIC versions, as VB, our version intent to sucrifice everything in the altar of simplicity.

The world is full of languages, SB does not offers something new, but intents to offer what
is lost in our days. A simple tool for easy to write programs, an easy way to do some maths
and build some scripts.

Our priorities are to build

e An extremly easy learned language.

e An extremly easy to use language.

e An ideal tool for experimenting on programming.
An excellent tool for mathematics.

An excellent tool for shell-scripts.

1.1.2.2 Cross-platform

Now, SB can run on more platforms than PalmOS, such Linux, DOS, Win32, EBM and
VTOS. An mechanism had inserted and porting to different platforms is an easy task. For
this reason, SB claims that it is a cross-platform language.

However, SB is based primary on Unix systems. A lot of feautures (for example, Units,
C-Modules) does not implemented on other systems yet.

1.2 Useful notes for beginners

1.2.1 What we must already know

Integer Number
A number that does not have a fractional part.

Floating-Point Number

Real Number
Often referred to in mathematical terms as real number, this is just a number
that can have a fractional part.

Numeric Constants
Numeric constants may be entered with any number of digits. For extremly
large or small numbers, it is usually more convenient to use scientific notation.

In scientific notation, a number is given as a mantissa (a number with one place
to the left of the decimal point) times 10 raised to an integer power.
Scientific Notation Examples:

15 is expressed as 1.5%1071, 1is typed as 1.5E+1

150 is expressed as 1.5%1072, 1is typed as 1.5E+2

1500 1is expressed as 1.5*%1073, 1is typed as 1.5E+3

1500 1is expressed as -1.5%1073, is typed as -1.5E+3

0.15 1is expressed as 1.5%107-1, is typed as 1.5E-1

Chapter 1: Introduction 3

Numeric Expressions

String

Numeric expressions are constructed from numeric constants, variables, and
functions using the arithmetic operators for addition (+), substraction (-), mul-
tiplication (*), division (/) and exponentiation (7).

The minus sign (-) can be used either to indicate subtraction or as a unary
minus.

The normal hierarchy for evaluating a numeric expression is exponentiation,
followed by multiplication and division, and then by addition and subtraction.
However, any part of a numeric expression that is enclosed in parenthesis is
evaluated first.

In SB more operators are supported. For further reading please see 'Operators’
section.

A datum consisting of a sequence of characters, such as ‘I am a string’.

String Constants

String constants are the texts enclosed in double quotation marks, like this:

"T am a string constant!"

String Expressions

String expressions are constructed from string variables, string constants, and
function references using the operation for concatenation (+) to combine strings.

Example:
x = "HI" + " THERE!"
In this example, the x is equal to "HI THERE!".

Relational Expressions

Relational expressions are most often used in the IF-THEN statement, but may
be used anywhere that numeric expressions are allowed. A relational expression
has a value of non-zero if it is true and a value of 0 if it is false. Relational
operators are performed, from left to right, after all arithmetic operations are
completed. The most usual relational operators are:

Equal to (=), Not equal to (<>)

Less than (<), Less than or equal to (<=)

Greater than (>), Greater than or equal to (>=)

Boolean Expressions (also known as Logical Expressions)

Variable

Named after the English mathematician Boole.

Logical expressions are used usual with relational expressions. The logical op-
erators are AND, OR and NOT. If true, logical expressions are given a value of
non-zero. If false, they are given a value of 0.

A logical expression using AND is true if both its left and right clauses are true.

A logical expression using OR is true if either its left or its right, or both, clauses
are true.

A logical expression using NOT is true if the following clause it is not true.

A variable is a name which represents a value. Actually the value exists in
memory, a variable represent the memory space that holds the value.

Chapter 1: Introduction 4

Array
Keyword

Statement
Command

Comment

Assignment

Procedure

Routine

SubRoutine

Function

Space
Tab

Whitespace

A grouping of multiple values under the same variable.

In a language, a keyword is a word that has special meaning. Keywords are
reserved and may not be used as variable names.

An important unit of the language

Also, known as build-in procedure

An expression that changes the value of some variable. The value that you can
assign to is called an Ivalue. The assigned values are called rvalues.

A specialized group of statements used to encapsulate general or program-
specific tasks. SB has a number of built-in procedures, and also allows you
to define your own.

In older times those groups of statements was called routines. This is why the
'procedures’ are called SUB(routines) in BASIC.

A specialized group of statements used to encapsulate general or program-
specific tasks. SB has a number of built-in functions, and also allows you
to define your own.

The difference between function and procedure is that, function can return a
value and can be used inside expressions. Procedure can’t do that.

The character generated by hitting the space bar on the keyboard.

The character generated by hitting the key on the keyboard. It usually
expands to up to eight or four spaces upon output.

A sequence of space, TAB, vertical tab, from-feed, or newline characters occur-
ring inside an input record or a string.

1.2.2 How to read the syntax

e Everything is written inside of [| characters are optional values.

e Everything is written inside of { } characters means you must select one of them.

e The symbol | means OR.

e The symbols ... means you can repeat the previous syntax.

e The keywords are written with capital letters.

e The parameters are written with lower letters.

e The keywords with suffix () are functions.

e The parameters with suffix () are arrays.

Example #1:

Chapter 1: Introduction 5

FOO <- This
FOOQ) <- This
foo <- This

foo() <- This
{A|B} <- This
[{AIB}] <- This

Example #2:

FOO al[, x]

is keyword

is function

is variable/parameter

is array/parameter

means that you must type A or B

means that you must use A or B or nothing

This means that you must give the first parameter (a) but you can use the second (x) only
if you want to. But if you want to use the (x) you must also separate it from (a) with a

comma.

Example #3:

FOO var [{,];} var2 [...]1]

This means that you must use the first parameter. You can also use second parameter but
you must separate it with ’,” or ’;’. You can also repeat the last syntax more times

The following code respects this syntax

FOO a

FOO a, b
FOO a; b
FOO a, b; c
FOO a, b, c

FOO a; b; c, d;

e, f, g

Example #4:

> Syntax: TEST {12}
TEST 1

TEST 2

> Syntax: TEST [HI]

TEST
TEST HI

1.3 Running SB Interactively

Interactive mode is supported only on console mode (Unix, DOS or Win32 Console). The
SmallBASIC is started by typing sbasic. When the SB starts, a prompt appears at which
we can run any OS command or starting typing the program.

Chapter 1: Introduction 6

(7
sbasic
SmallBASIC VERSION 0.9.0

Copyright (c) 2000-2003 Nicholas Christopoulos

Type ’HELP’ for help; type ’BYE’ or press Ctrl+C for exit.
* READY =*

/home/nikosc>
N J

Type the following program, pressing at the end of each program line.

10 PRINT "Are you ready"
20 PRINT "to learn BASIC?"
30 END

Check the program now to see if there are any typing mistakes. If there are, use
or to find the previously typed lines. Use (right-arrow) or {eft-arrow) to move inside
the line. Fix the problem and press (ENTER).

When you are ready to see the program in action, type CLSENTER). The screen will be
cleared.

Now, type RUN(ENTER).

(" N
/home/nikosc> run

Are you ready
to learn BASIC?

* DONE x*
/home/nikosc>
N J
Now, type LIST(ENTER) to see your program lines.
(N

/home/nikosc> list
10: PRINT "Are you ready"
20: PRINT "to learn BASIC?"
30: END

/home/nikosc>
N J

This is the simpliest way to run SB, usefull when we want to do some temporary calculations.
It is also give us a taste of the old times.

1.4 Running SB

The usual way is type our program to an editor and save that in a file. Typically an SB
program file must be terminated with ‘.sb’ or ‘.bas’. That helps the OS to understand the
type of the file.

Chapter 1: Introduction 7

Create a file with an editor like joe, kate or EDIT. Give to them a name, for example
‘myprog.sb’. Type some commands like our previous example, save it and exit from the
editor. Now, run SB by using the file-name as parameter.

sbasic -q myprog.sb
Hello, world!
#

The -q option tells to SB to be quite.

There are also more advanced ways to run a program with SB. For example, type a program
that prints out SB commands!

myprog.sb
PRINT "PRINT 3/4"
Now, run it by using | (pipe) symbol.

sbasic -q myprog.sb | sbasic -q
0.75
#

We did something very simple. The first sbasic runs the ‘myprog.sb’, this program prints
out the PRINT 3/4 text. The second sbasic was execute the result of the first sbasic which
was the code PRINT 3/4.

1.4.1 Unix script executables

In Unices we can create script executables. Those script are working similar to the common
executables.

We need only two things.

a) A line at the beginning of our program
#!/usr/bin/sbasic -q

b) And sets the executable attribute of the file
chmod 0777 myprog.sb

Now we can run it as usual.

./myprog.sb
Hello, world!
#

We can find more on scripts, paths and Unix attributes on Unix manuals.

Chapter 2: The language 8

2 The language
This chapter documents language structure.

2.1 Constants and Variables

e All user variables (include arrays) are "Variant’. That means the data-type is invisible
to user.

e User-defined data types are not allowed.
e Arrays are always dynamic, even if you had declared their size, with dynamic size and
type of elements.
However, SmallBASIC uses, internally, 4 data-types
1. Integer (32bit)
2. Real (64bit)
3. String (<32KB on 16bit / 2GB on 32bit)
4. Array (72970 elements on 16bit / “50M elements on 32bit)

Convertions between those types are performed internaly. In anycase there are functions
for the user to do it manualy.

2.1.1 Variable names

Variable names can use any alphanumeric characters, extended characters (ASCII codes
128-255 for non-English languages) the symbol '_’; and the symbol '$’.

The first character of the name cannot be a digit nor a ’$’.
2.1.2 About the dollar-symbol

The symbol ’$’ is supported for compatibility. Since in SmallBASIC there are no data-types
its use is meaningless.

The dollar in function names will be ignored

The dollar in variable names will be count as part of the name (that means v and v$ are
two different variables). It can be used only as the last character of the name, and only one
allowed.

The dollar in system variables names will be ignore it (that means COMMAND and COM-
MANDS is the same)

Example of variable names:

abc, a_c, _bc, ab2c, abc$ -> valid names
1cd, a$b, $abc -> invalid names

Chapter 2: The language 9

2.1.3 Integers

This is the default data type. You can declare integers in decimal, hexadecimal, octal and
binary form.

x = 256 ’
= 0x100 ’ Hexadecimal form 1
x = &h100 ’ Hexadecimal form 2

s}

x = 00400 ’ Octal form 1
x = &0400 ’ Octal form 2

x = 0Obl1ll ’ Binary form 1
x = &bl11l ’ Binary form 2

2.1.4 Reals

Any number which out-bounds the limits or an ’integer’ or had decimal digits will be
converted automatically to real.

x = .25
x =1.2
Reals can be also written by using scientific notation. 1E+2 or 1E-+2, 5E-2, 2.6E-0.25, etc

2.1.5 Strings

Strings may be appended to one another using the + operator.
b = "Hello, " + "world!"

2.1.6 Constants

Constant variables can be declared by using the keyword CONST
CONST my_pi = 3.14

2.2 System Variables

System variables, are constant variables for the programmer. Those variables get values or
modified at run-time by the SB’s subsystem.

OSNAME Operating System name

OSVER Operating System Version (0xAABBCC (A=major, B=minor, C=patch))
SBVER SmallBASIC Version (0xAABBCC)

PI 3.14..

Chapter 2: The language

XMAX Graphics display, maximum x (width-1)
YMAX Graphics display, maximum y (height-1) value

BPP Graphics display: bits per pixel (color resolution)
VIDADR Video RAM address (only on specific drivers)
CWD Current Working Directory

HOME User’s home directory

COMMAND

Command-line parameters
TRUE The value 1
FALSE The value 0

2.3 Operators

Sorted by priority
() Parenthesis

+, - Unary
- bitwise NOT
NOT or! Logical NOT (NOT false = true)

Exponentiation

* 70\ Multiplication, Division, Integer Division

% or Reminder (QB compatible: a=int(a), b=int(b),
MOD a-b*(a/b))

MDL Modulus (a%b+b*(sgn(a)<>sgn(b)))

+, - Addition/Concatenation, Subtraction

= Equal

<>or!= Not Equal

>, < Less Than, Greater Than

=> =< Less or Equal, Greater or Equal

>=, <= Less or Equal, Greater or Equal

IN belongs to ... (see "The IN operator")

LIKE Regular expression match (see "The LIKE
operator")

AND or Logical AND
&&

ORor || Logical OR
BAND bitwise AND
or &

Chapter 2: The language 11

BOR or bitwise OR
|

EQV bitwise EQV
IMP bitwise IMP
XOR bitwise XOR

NAND bitwise NAND
NOR bitwise NOR
XNOR bitwise XNOR

2.4 Special Characters

&h or Prefix for hexadecimal constant (0x1F, &h3C)

&o or Prefix for octal constant (0033, &033)

gcob or Prefix for binary constant (0b1010, &b1110)

[[),],3] Array definition (function ARRAY()) ($1)

<< Appends to an array (command APPEND) ($1)

++ Increase a value by 1 (x =x + 1) ($1)

- Decrease a value by 1 (x =x - 1) ($1)

p= Another LET macro (x = x p ...). Where p any character of -+/*"%&

: Separates commands typed on the same line

& Join code lines (if its the last character of the line). The result line its must not
exceed the max. line size.

Meta-command (if its the first character of the line) or prefix for file handle

¢ The ’at’ symbol can by used instead of BYREF ($1)

’ Remarks

$1 Pseudo operators. These operators are replaced by compiler with a command or an
ExTPTeSSLON.

2.5 The OPTION keyword

OPTION keyword parameters [Statement]
This special command is used to pass parameters to the SB-environment. There are
two styles for that, the run-time (like BASE) which can change the value at run-time,
and the compile-time (like PREDEF) which used only in compile-time and the value
cannot be changed on run-time.

2.5.1 Run-Time

OPTION BASE lower-bound [Statement]
The OPTION BASE statement sets the lowest allowable subscript of arrays to lower-
bound. The default is zero. The OPTION BASE statement can be used in any place in
the source code but that is the wrong use of this except if we have a good reason.

Chapter 2: The language 12

In most cases the OPTION BASE must declared at first lines of the program before any
DIM declaration.

OPTION MATCH {PCRE [CASELESS]|SIMPLE} [Statement]
Sets as default matching algorithm to (P)erl-(C)ompatible (R)egular (E)xpressions
library or back to simple one. Matching-algorithm is used in LIKE and FILES.

PRCE works only in systems with this library and it must be linked with. Also, there
is no extra code on compiler which means that SB compiles the pattern everytime it
is used.

2.5.2 Compile-Time

OPTION PREDEF parameter [Statement]

Sets parameters of the compiler. Where parameter
‘QUITE’ Sets the quite flag (-q option)

‘COMMAND cmdstr’
Sets the COMMAND$ string to cmdstr (useful for debug reasons)

‘GRMODE [widthxheight [xbppl]’
Sets the graphics mode flag (-g option) or sets the prefered screen reso-
lution. Example: (Clie HiRes)

OPTION PREDEF GRMODE 320x320x16

‘TEXTMODE’
Sets the text mode flag (-g- option)

‘CSTR’ Sets as default string style the C-style special character encoding (’\")
2.6 Meta-commands

#l... [Macro]
Used by Unix to make source runs as a script executable

F#£sec: section-name [Macro]
Used internally to store the section name. Sections names are used at limited OSes
like PalmOS for multiple 32kB source code sections. With a few words DO NOT USE
IT!

F#inc: file [Macro]
Used to include a SmallBASIC source file into the current BASIC code

#unit-path: path [Macro]
Used to setup additional directories for searching for unit-files This meta does nothing
more than to setting up the environment variable SB_UNIT_PATH. Directories on
Unix must separated by ", and on DOS/Windows by ’;’

Examples

Chapter 2: The language 13

#inc:"mylib.bas"
MyLibProc "Hi"
2.7 Arrays and Matrices

Define a 3x2 matrix
A = [11, 12; 21, 22; 31, 32]
That creates the array

| 11 12 |
| 21 22 | = A
| 31 32 |
The comma used to separate column items; the semi-colon used to separate rows. Values
between columns can be omitted.
A=1[,;;1,2;3,4,:5]
This creates the array
| 0 0 O |
1 2 0| =A
| 3 4 5 |
Supported operators:
Add/sub:
B

[1, 2; 3, 4]: C = [5, 6; 7, 8]

A
C

Equal:
bool=(A=B)
Unary:
A2 = -A
Multiplication:
A =11, 2; 3, 4]1: B =[5 ; 6]
C=Ax%xB
D 0.8 * A
Inverse:
A=1[1, -1, 1; 2, -1, 2; 3, 2, -1]
? INVERSE(A)

Gauss-Jordan:

B+C
A-B

? "Solve this:"

?" bx -2y + 3z = -2"
7" -2x + 7y +5z= T"
?" 3x + b5y + 6z = 9"

Chapter 2: The language 14

=[5, -2, 3; -2, 7, 5; 3, 5, 6]
= [-2; 7; 9]

= LinEqn(A, B)

"[X;y;Z] =" C

N QW= N

There is a problem with 1 dimension arrays, because 1-dim arrays does not specify how
SmallBASIC must see them.

DIM A(3)
| 123 | =4

or

w N =

I 11
21 =4
I 31

And because this is not the same thing. (ex. for multiplication) So the default is columns
DIM A(3) ’ or A(1,3)

| 123 | =A
For vertical arrays you must declare it as 2-dim arrays Nx1
DIM A(3,1)
[1]
| 2] =A
| 3 |

2.8 Nested arrays

Nested arrays are allowed
A= [[1,2] , [3,4]]
B =[1, 2, 3]
c = [4, 5]
B(2) =C
print B
This will be printed
(1, 2, [4, 5], 3]
You can access them by using a second (or third, etc) pair of parenthesis.

B(2)(1) = 16
print B(2) (1)

Result:
16

Chapter 2: The language 15

2.9 The operator IN

IN operator is used to compare if the left-value belongs to right-value.

> Using it with arrays

print 1 in [2,3] :REM FALSE
print 1 in [1,2] :REM TRUE
print "b" in ["a", "b", "c"] :REM TRUE

> Using it with strings
print "na" in "abcde" :REM FALSE
print "cd" in "abcde" :REM TRUE

> Using it with number (true only if left = right)
print 11 in 21 :REM FALSE
print 11 in 11 :REM TRUE

> special case

> auto-convert integers/reals
print 12 in "234567" :REM FALSE
print 12 in "341256" :REM TRUE

2.10 The operator LIKE

LIKE is a regular-expression operator. It is compares the left part of the expression with the
pattern (right part). Since the original regular expression code is too big (for handhelds),
I use only a subset of it, based on an excellent old stuff by J. Kercheval (match.c, public-
domain, 1991). But there is an option to use PCRE (Perl-Compatible Regular Expression
library) on systems that is supported (Linux); (see OPTION).

The same code is used for filenames (FILES(), DIRWALK) too.
In the pattern string:

* matches any sequence of characters (zero or more)

? matches any character

[SET] matches any character in the specified set,

[ISET] or [~SET] matches any character not in the specified set.

A set is composed of characters or ranges; a range looks like character hyphen character
(as in 0-9 or A-Z). [0-9a-zA-Z_] is the minimal set of characters allowed in the [..] pattern
construct.

To suppress the special syntactic significance of any of ‘[[*?!"-\", and match the character
exactly, precede it with a ‘\’.

7 "Hello" LIKE "*[o0O]" : REM TRUE
? "Hello" LIKE "He?7o" : REM TRUE
? "Hello" LIKE "hello" : REM FALSE
? "Hello" LIKE "[Hh]*" : REM TRUE

Chapter 2: The language 16

2.11 The pseudo-operator <<

This operator can be used to append elements to an array.

A< 1
A << 2
A << 3

? A(1)
2.12 Subroutines and Functions

Syntax of procedure (SUB) statements

SUB name [([BYREF] parl [, ...[BYREF] parN)]]
[LOCAL var[, var[, ...1]1]
[EXIT SUB]
END
Syntax of function (FUNC) statements
FUNC name[([BYREF] parl [, ...[BYREF] parN)]]
[LOCAL var[, var[, ...]]1]

[EXIT FUNC]

name=return-value
END

On functions you must use the function’s name to return the value. That is, the function-
name acts like a variable and it is the function’s returned value.

The parameters are 'by value’ by default. Passing parameters by value means the executor
makes a copy of the parameter to stack. The value in caller’s code will not be changed.

Use BYREF keyword for passing parameters 'by reference’. Passing parameters by reference
means the executor push the pointer of variable into the stack. The value in caller’s code
will be the changed.
> Passing ’x’ by value
SUB F(x)
x=1
END

x=2
F x
? x:REM displays 2
> Passing ’x’ by reference
SUB F(BYREF x)
x=1
END

Chapter 2: The language 17

x=2
F x
? x:REM displays 1
You can use the symbol '@ instead of BYREF. There is no difference between @ and BYREF.
SUB F(@x)
x=1
END
On a multi-section (PalmOS) applications sub/funcs needs declaration on the main section.

#sec:Main
declare func f(x)

#sec:another section
func f(x)

end

Use the LOCAL keyword for local variables. LOCAL creates variables (dynamic) at routine’s
code.
SUB MYPROC
LOCAL N:REM LOCAL VAR
N=2
? N:REM displays 2
END

N=1:REM GLOBAL VAR
MYPROC
? N:REM displays 1

You can send arrays as parameters.

When using arrays as parameters its better to use them as BYREF; otherwise their data will
be duplicated in memory space.

SUB FBR(BYREF tbl)
7 FRE(0)

END

SUB FBV(tbl)
7 FRE(0)

END

> MAIN
DIM dt(128)

? FRE(0)

Chapter 2: The language

FBR dt
? FRE(0)
FBV dt

? FRE(0)

Passing & returning arrays, using local arrays.

func fill(a)
local b, i

dim b(16)
for i=0 to 16
b(i)=16-a(i)
next
fill=b
end

DIM v()
v=fill(v)

2.13 Single-line Functions

There is also an alternative FUNC/DEF syntax (single-line functions). This is actually a

macro for compatibility with the BASIC’s DEF FN command, but quite usefull.
Syntax:

FUNC name[(pari[,...])] = expression
or

DEF name[(pari[,...])] = expression
DEF MySin(x) = SIN(x)

? MySin(pi/2)

2.14 Nested procedures and functions

18

One nice feauture, are the nested procedures/functions. The nested procedures/functions

are visible only inside the "parent" procedure/function.
There is no way to access a global procedure with the same name of a local... yet...

FUNC f(x)
Rem Function: F/F1()
FUNC f1(x)
Rem Function: F/F1/F2()
FUNC f2(x)
f2=cos(x)
END
f1 = f2(x)/4
END
Rem Function: F/F3()

Chapter 2: The language 19

FUNC £3
£3=£1(pi/2)

END
REM
? f1(pi) : REM OK
7 £f2(pi) : REM ERROR
f =x+ f1(pi) + £3 : REM 0K
END

2.15 Units (SB libraries)

* Linux ONLY for now *

Units are a set of procedures, functions and/or variables that can be used by another SB
program or SB unit. The main section of the unit (commands out of procedure or function
bodies) is the initialization code.

A unit declared by the use of UNIT keyword.
UNIT MyUnit

The functions, procedure or variables which we want to be visible to another programs must
be declared with the EXPORT keyword.

UNIT MyUnit
EXPORT MyF

FUNC MyF (x)

END
* Keep file-name and unit-name the same. That helps the SB to automatically recompile
the required units when it is needed.
To link a program with a unit we must use the IMPORT keyword.

IMPORT MyUnit

To access a member of a unit we must use the unit-name, a point and the name of the
member.

IMPORT MyUnit

PRINT MyUnit.MyF(1/1.6)
Full example:
file my _unit.bas:

UNIT MyUnit

EXPORT F, V

REM a shared function
FUNC F(x)

Chapter 2: The language 20

F = x*xx
END

REM a non-shared function
FUNC I(x)

I = x+x
END

REM Initialization code

V="1 am a shared variable"

L="1 am invisible to the application"
PRINT "Unit ’MyUnit’ initialized :)"

file my_app.bas:
IMPORT MyUnit

PRINT MyUnit.V
PRINT MyUnit.F(2)

2.16 The pseudo-operators ++/—/p=

The ++ and — operators are used to increase or decrease the value of a variable by 1.

x =4
Xx ++ : REM x <-x + 1 =25
x —— : REMx<-x-1=4

The generic p= operators are used as in C Where p any character of -+/*~%& |

x += 4 : REM x <- x + 4
x *= 4 : REM x <- x * 4

All these pseudo-operators are not allowed inside of expressions

y = x ++ ’ ERROR
(y+=4)+5 °> ALSO ERROR

z

2.17 The USE keyword

This keyword is used on specific commands to passing a user-defined expression.
Example:

SPLIT s," ",v USE TRIM(x)
In that example, every element of V() will be ’trimmed’.

Use the x variable to specify the parameter of the expression. If the expression needs more
parameter, you can use also the names y and z

Chapter 2: The language 21

2.18 The DO keyword

This keyword is used to declare single-line commands. It can be used with WHILE and
FOR-family commands.

Example:
FOR f IN files("*.txt") DO PRINT f

WHILE i < 4 DO i ++
Also, it can be used by IF command (instead of THEN), but is not suggested.

Chapter 3: Programming Tips 22

3 Programming Tips
Programmers must use clean and logical code. Weird code may be faster but it is not good.

3.1 Using LOCAL variables

When a variable is not declared it is by default a global variable. A usual problem is that
name may be used again in a function or procedure.

FUNC F(x)
FOR i=1 TO 6

NEXT
END

FOR i=1 TO 10
PRINT F(i)
NEXT
In this example, the result is a real mess, because the i of the main loop will always (except
the first time) have the value 6!
This problem can be solved if we use the LOCAL keyword to declare the i in the function
body.

FUNC F(x)
LOCAL i

FOR i=1 TO 6

NEXT
END

FOR i=1 TO 10
PRINT F(i)
NEXT
It is good to declare all local variables on the top of the function. For compatibility reasons,
the func./proc. variables are not declared as ’local’ by default. That it is WRONG but as
I said ... compatibility.

3.2 Loops and variables

When we write loops it is much better to initialize the counters on the top of the loop
instead of the top of the program or nowhere.

i=0

REPEAT

Chapter 3: Programming Tips 23

UNTIL i > 10

Initializing the variables at the top of the loop, can make code better readable, and can
protect us from usual pitfalls such as forgeting to giving init value or re-run the loop without
reset the variables.

3.3 Loops and expressions

FOR-like commands are evaluate the ’destination’ everytime. Also, loops are evaluate the
exit-expression everytime too.

FOR i=0 TO LEN(FILES("*.txt"))-1
PRINT i
NEXT

In that example the ’destination’ is the LEN(FILES("*.txt"))-1 For each value of i the
destination will be evaluated. That is WRONG but it is supported by BASIC and many
other languages.
So, it is much better to be rewritten as

idest=LEN(FILES("*.txt"))-1

FOR i=0 TO idest

PRINT i
NEXT

Of course, it is much faster too.

Chapter 4: Commands 24

4 Commands

REM comment [Statement]
Adds explanatory text to a program listing. comment commentary text, ignored by
BASIC.

Instead of the keyword we can use the symbol * or the #. The # can be used as
remarks only if its in the first character of the line.

Example:

> That text-line is just a few remarks
REM another comment

one more comment

LET var = expr [Statement]
Assigns the value of an expression to a variable. The LET is optional.
var A valid variable name.
expr The value assigned to variable.
Example:
LET x = 4
x=1 > Without the LET keyword
z = "String data" > Assign string
DIM v(4)
zZ=v > Assign array (z = clone of v)
CONST name = expr [Statement]
Declares a constant.
name An identifier that follows the rules for naming BASIC variables.
expr An expression consisting of literals, with or without operators, only.
Example:

COSNT G = 6.67259E-11

DIM var([lower TO] upper [, ...]) [, -..] [Statement]
The DIM statement reserves space in computer’s memory for arrays. The array will
have (upper-lower)+1 elements. If the lower is not specified, and the OPTION BASE
hasn’t used, the arrays are starting from 0.

Example:

REM One dimension array of 7 elements, starting from O
DIM A(6)

REM One dimension array of 6 elements, starting from 1
DIM A(1 TO 6)

Chapter 4: Commands 25

REM Three dimension array
DIM A(1 TO 6, 1 TO 4, 1 TO 8)

REM Allocating zero-length arrays:
DIM z()

IF LEN(Z)=0 THE APPEND Z, "The first element"

LABEL name [Statement)]
Defines a label. A label is a mark at this position of the code.

There are two kinds of labels, the 'numeric’ and the ’alphanumeric’.
"Numeric’ labels does not needed the keyword LABEL, but ’alphanumeric’ does.
Example:

1000 7 "Hello"

LABEL Alphalabel: ? "Hello"
GOTO 1000

GOTO Alphalabel

GOTO Iabel [Statement]

Causes program execution to branch to a specified position (label).

GOSUB label [Statement]
Causes program execution to branch to the specified label; when the RETURN command
is encountered, execution branches to the command immediately following the most
recent GOSUB command.

RETURN [Statement)|
Execution branches to the command immediately following the most recent GOSUB
command.

GOSUB my_routine
PRINT "RETURN sent me here"

LABEL my_routine
PRINT "I am in my routine"
RETURN

ON GOTO|GOSUB labell |, ..., labelN| [Statement]
Causes BASIC to branch to one of a list of labels.

expr A numeric expression in the range 0 to 255. Upon execution of the
ON...GOTO command (or ON...GOSUB), BASIC branches to the nth
item in the list of labels that follows the keyword GOTO (or GOSUB).

Chapter 4: Commands 26

FOR counter = start TO end [STEP incr] ... NEXT [Statement]
Begins the definition of a FOR/NEXT loop.
counter A numeric variable to be used as the loop counter.
start A numeric expression; the starting value of counter.
end A numeric expression; the ending value of counter.
incr A numeric expression; the value by which counter is incremented or decre-

mented with each iteration of the loop. The default value is +1.

BASIC begins processing of the FOR/NEXT block by setting counter equal to start.
Then, if ’incr’ is positive and counter is not greater than end, the commands between
the FOR and the NEXT are executed.

When the NEXT is encountered, counter is increased by ’incr’, and the process is
repeated. Execution passes to the command following the NEXT if counter is greater
than end.

If increment is negative, execution of the FOR/NEXT loop is terminated whenever
counter becomes less than end.

FOR/NEXT loops may be nested to any level of complexity, but there must be a
NEXT for each FOR.

Example:

FOR C=1 TO 9
PRINT C
NEXT

FOR element IN array ... NEXT [Statement]
Begins the definition of a FOR/NEXT loop.

element A variable to be used as the copy of the current element.
array An array expression

The commands-block will repeated for LEN(array) times. Each time the ’element’
will holds the value of the current element of the array.

FOR/NEXT loops may be nested to any level of complexity, but there must be a
NEXT for each FOR.
Example:

A=[1,2,3]

FOR E IN A

PRINT E
NEXT

> This is the same with that
A=[1,2,3]
FOR I=LBOUND(A) TO UBQOUND(A)
E=A(D)
PRINT E
NEXT

Chapter 4: Commands 27

WHILE expr ... WEND [Statement]
Begins the definition of a WHILE/WEND loop.

expr An expression

BASIC starts by evaluating expression. If expression is nonzero (true), the next
command is executed. If expression is zero (false), control passes to the first command
following the next WEND command.

When BASIC encounters the WEND command, it reevaluates the expression parameter
to the most recent WHILE. If that parameter is still nonzero (true), the process is
repeated; otherwise, execution continues at the next command.

WHILE/WEND loops may be nested to any level of complexity, but there must be a
WEND for each WHILE.
Example:
C=1
WHILE C<10
PRINT C
C=C+1
WEND

> This is the same with that
FOR C=1 TO 9

PRINT C
NEXT

REPEAT ... UNTIL expr [Statement]
Begins the definition of a REPEAT/UNTIL loop.

expr An expression

BASIC starts executing the commands between the REPEAT and UNTIL commands.
When BASIC encounters the UNTIL command, it evaluates the expression parameter.
If that parameter is zero (false), the process will be repeated; otherwise, execution
continues at the next command.

REPEAT /UNTIL loops may be nested to any level of complexity, but there must be
an UNTIL for each REPEAT.
Example:
C=1
REPEAT
PRINT C
C=C+1
UNTIL C=10

> This is the same with that
FOR C=1 TO 9

PRINT C
NEXT

Chapter 4: Commands 28

IF ..

. [Statement]
Syntax:

IF expressionl [THEN]
[commands]

[[ELSEIF | ELIF] expression2 [THEN]

[commands]
]
[ELSE

[commands]
]

{ ENDIF | FI }
Block-style IF.
Causes BASIC to make a decision based on the value of an expression.

expression An expression; 0 is equivalent to FALSE, while all other values are equiv-
alent to TRUE.

commands
One or more commands.

Each expression in the IF/ELSEIF construct is tested in order. As soon as an ex-
pression is found to be TRUE, then its corresponding commands are executed. If no
expressions are TRUE, then the commands following the ELSE keyword are executed.
If ELSE is not specified, then execution continues with the command following the
ENDIF.

IF, ELSE, ELSEIF, and ENDIF must all be the first keywords on their respective
lines.

THEN is optional, but if its defined it must be the last keyword on its line; if anything
other than a comment follows on the same line with THEN, BASIC thinks it’s reading
a single-line IF /THEN/ELSE construct.

IF blocks may be nested.

Example:
x=1
IF x=1 THEN
PRINT "true"
ELSE
PRINT "false"
ENDIF

> Alternate syntax:
x=1

Chapter 4: Commands 29

IF x=1

PRINT "true"
ELSE

PRINT "false"
FI

Single-line IF.
Syntax:
IF expression THEN [num-label] | [command] [ELSE [num-label] | [command]]]]

Causes BASIC to make a decision based on the value of an expression.

expression An expression; 0 is equivalent to FALSE, while all other values are equiv-
alent to TRUE.

command Any legal command or a numeric label. If a number is specified, it is
equivalent to a GOTO command with the specified numeric-label.

Example:
> Single-line IF
x=1
IF x=1 THEN PRINT "true" ELSE PRINT "false"
IF x=1 THEN 1000

1000 PRINT "true"

IF (expression, true-value, false-value) [Function]
Returns a value based on the value of an expression.
Example:
x=0

PRINT IF(x<>0,"true","false") : REM prints false

END |[error] [Statement]

STOP |[error] [Statement]
Terminates execution of a program, closes all files opened by the program, and returns
control to the operating system.

error A numeric expression.
The error is the value which will returned to operating system; if its not specified the

BASIC will return 0.

DOS/Windows The ’error’ value is very well known as ERRORLEVEL value.

RESTORE Iabel [Statement]
Specifies the position of the next data to be read.

label A valid label.

Chapter 4: Commands 30

READ var], var ... [Command]|

Assigns values in DATA items to specified variables.
var Any variable.

Unless a RESTORE command is executed, BASIC moves to the next DATA item with
each READ assignment. If BASIC runs out of DATA items to READ, an run-time
€ITOr OCCUrs.

Example:

FOR c=1 TO 6
READ x
PRINT x

NEXT

DATA "a,b,c", 2
DATA 3, 4
DATA "fifth", 6

DATA constantl [,constant2]... [Statement]
Stores one or more constants, of any type, for subsequent access via READ command.

DATA commands are nonexecutable statements that supply a stream of data con-
stants for use by READ commands. All the items supplied by all the DATA commands
in a program make up one continuous "string" of information that is accessed in order
by your program’s READ commands.

Example:

RESTORE MyDataBlock
FOR I=1 TO 3
READ v
PRINT v
NEXT
END

LABEL MyDataBlock

DATA 1,2,3
ERASE var], var|, ... var]] [Statement]
var Any variable.

Deallocates the memory used by the specified arrays or variables. After that these
variables turned to simple integers with zero value.

Example:
DIM x(100)

PRINT FRE(0)

ERASE x

PRINT FRE(O)

PRINT x(1):REM ERROR

Chapter 4: Commands 31

EXIT [FOR|LOOP|SUB|FUNC] [Statement]
Exits a multiline function definition, a loop, or a subprogram. By default (if no
parameter is specified) exits from last command block (loop, for-loop or routine).

FOR Exit from the last FOR-NEXT loop
LOOP Exit from the last WHILE-WEND or REPEAT-UNTIL loop
SUB Return from the current routine
FUNC Return from the current function
LEN (x) [Function]
X Any variable.

If x is a string, returns the length of the string. If x is an array, returns the number
of the elements. If x is an number, returns the length of the STR(x).

EMPTY (x) [Function]
b'e Any variable.

If x is a string, returns true if the len(x) is 0. If x is an integer or a real returns true
if the x = 0. If x is an array, returns true if x is a zero-length array (array without
elements).

ISARRAY (x) [Function]
X Any variable.
Returns true if the x is an array.

ISNUMBER (x) [Function]
X Any variable.

Returns true if the x is a number (or it can be converted to a number)

Example:
? ISNUMBER(12) :REM true
? ISNUMBER("12") :REM true
? ISNUMBER("12E+2") :REM true
? ISNUMBER("abc") :REM false
? ISNUMBER("1+2") :REM false
? ISNUMBER("int(2.4)") :REM false
ISSTRING (x) [Function]
b'e Any variable.

Returns true if the x is a string (and cannot be converted to a number)

Example:
? ISSTRING(12) :REM false
? ISSTRING("12") :REM false
? ISSTRING("12E+2") :REM false
? ISSTRING("abc") :REM true
? ISSTRING("1+2") :REM true

Chapter 4: Commands

APPEND a, val [, val [, ...]

a An array-variable.
val Any value or expression

Inserts the values at the end of the specified array.

INSERT a, idx, val [, val [, ...]]]

a An array-variable.
idx Position in the array.
val Any value or expression.

Inserts the values to the specified array at the position idx.

DELETE a, idx [, count]

a An array-variable.
idx Position in the array.
count The number of the elements to be deleted.

Deletes ’count’ elements at position 'idx’ of array A

32

[Command]|

[Command]|

[Command]|

Chapter 5: System 33

5 System

FRE (x) [Function]
Returns system information
Where x:
QB-standard:
0 free memory
-1 largest block of integers
-2 free stack
-3 largest free block
Our standard (it is optional for now):
-10 total physical memory
-11 used physical memory
-12 free physical memory
Optional-set #1:
-13 shared memory size
-14 buffers
-15 cached
-16 total virtual memory size
-17 used virtual memory
-18 free virtual memory
Optional-set #2:
-40 battery voltage * 1000
-41 battery percent
-42 critical voltage value (*1000)
-43 warning voltage value (*1000)

The optional values will returns 0 if are not supported.

RTE [info [, ...]] [Command]|
Creates a Run-Time-Error. The parameters will be displayed on error-line.

TICKS [Function]

Returns the system-ticks. The tick value is depended on operating system.

TICKSPERSEC [Function]

Returns the number of ticks per second

TIMER [Function]

Returns the number of seconds from midnight

TIME [Function]
Returns the current time as string "HH:MM:SS"

TIMEHMS hms | timer, BYREF h, BYREF m, BYREF s [Command]|
Converts a time-value to hours, minutes and seconds integer values

Chapter 5: System 34

DATE [Function]
Returns the current day as string "DD/MM/YYYY"

JULIAN (dmy | (d,m,y)) [Function]
Returns the Julian date. (dates must be greater than 1/1/100 AD)
Example:

PRINT Julian(DATE)
PRINT Julian(31, 12, 2001)

DATEDMY dmy | julian_date, BYREF d, BYREF m, BYREF y [Command]|
Returns the day, month and the year as integers.

WEEKDAY (dmy | (d,m,y) | julian_date) [Function]
Returns the day of the week (0 = Sunday)
PRINT WeekDay (DATE)
PRINT WeekDay(Julian(31, 12, 2001))
PRINT WeekDay(31, 12, 2001)

DATEFMT (format, dmy | (d,m,y) | julian_date) [Function]
Returns formated date string
Format:
D one or two digits of Day
DD 2-digit day
DDD 3-char day name
DDDD full day name
M 1 or 2 digits of month
MM 2-digit month
MMM 3-char month name
MMMM full month name
YY 2-digit year (2K)
YYYY 4-digit year

PRINT DATEFMT("ddd dd, mm/yy", "23/11/2001")
REM prints "Fri 23, 11/01"

DELAY ms [Command]|
Delay for a specified amount of milliseconds. This ’delay’ is also depended to system
clock.

SORT array [USE cmpfunc] [Command]

Sorts an array.
The cmpfunc (if its specified) it takes 2 vars to compare. cmpfunc must returns
lifx<y, +lifx>y Oifx =y
FUNC gscmp(x,y)
IF x=y
gscmp=0
ELIF x>y
gscmp=1

Chapter 5: System 35

ELSE
gscmp=-1

ENDIF

END

DIM A(5)

FOR i=0 TO 5
A(i)=RND

NEXT

SORT A USE gscmp(x,y)

SEARCH A, key, BYREF ridx [USE cmpfunc] [Command]|
Scans an array for the key. If key is not found the SEARCH command returns (in
ridx) the value (LBOUND(A)-1). In default-base arrays that means -1.

The cmpfunc (if its specified) it takes 2 vars to compare. It must return 0 if x = y;
non-zero if x <>y

FUNC cmp(x,y)

cmp=! (x=y)
END
DIM A(5)
FOR i=0 TO 5

A(i)=5-i

NEXT
SEARCH A, 4, r USE cmp(x,y)
PRINT r:REM prints 1
PRINT A(r): REM prints 4

CHALIN file [Command]|
Transfers control to another SmallBASIC program.

file - A string expression that follows OS file naming conventions; The file must be a
SmallBASIC source code file.

CHAIN "PROG2.BAS"
EXEC file [Command]|
Transfers control to another program
This routine works like CHAIN with the exception the file can be any executable file.
EXEC never returns
ENVIRON "expr" [Command]|

ENV "expr" [Command]
Adds a variable to or deletes a variable from the current environment variable-table.

expr A string expression of the form "name=parameter"

If name already exists in the environment table, its current setting is replaced with
the new setting. If name does not exist, the new variable is added.

PalmOS SB emulates environment variables.

Chapter 5: System 36

ENV ("var") [Function]

ENVIRON ("var") [Function]
Returns the value of a specified entry in the current environment table. If the pa-
rameter is empty ("") then returns an array of the envirment variables (in var=value
form)

var A string expression of the form "var"

PalmOS SB emulates environment variables.

RUN cmdstr [Command]|
Loads a secondary copy of system’s shell and, executes an program, or an shell com-
mand.
cmdstr Shell’s specific command string

After the specified shell command or program terminates, control is returned to the
line following the RUN command.

PalmOS The ‘emdstr’ is the Creator-ID.
PalmOS The RUN never returns.

RUN ("command") [Function]
RUN() is the function version of the RUN command. The difference is that, the
RUN() returns a string with the output of the ’command’ as an array of strings (each
text-line is one element).

PalmOS The RUN() does not supported.
Windows The stdout and stderr are separated! First is the stdout output and following

the stderr.
TRON [Command]|
TROFF [Command]|

TRACE ON/OFF. When trace mechanism is ON, the SB displays each line number
as the program is executed

LOGPRINT .. [Command]|
PRINT to SB’s logfile. The syntax is the same with the PRINT command.

MALLOC (size) [Function]

BALLOC (size) [Function]

Allocates a memory block.

* The variable can be freed by using ERASE.
VADR (var) [Function]

Returns the memory address of the variable’s data.

PEEK[{16132}] (addr) [Function]

Returns the byte, word or dword at a specified memory address.

Chapter 5: System

POKE[{16|32}] addr, value

Writes a specified byte, word or dword at a specified memory address.

USRCALL addr

Transfers control to an assembly language subroutine.
The USRCALL is equal to:

void (xf) (void);
f = (void (*)(void)) addr;
£O;

BCOPY src_addr, dst_addr, length
Copies a memory block from ’src_addr’ to ’dst_addr’

BLOAD filename], address]

Loads a specified memory image file into memory.

BSAVE filename, address, length
Copies a specified portion of memory to a specified file.

STKDUMP

Displays the SB’s internal executor’s stack

* For debug purposes; it is not supported on "limited" OSes.

37

[Command]|

[Command]|

[Command]|

[Command]|

[Command]|

[Command]|

Chapter 6: Graphics & Sound 38

6 Graphics & Sound

The SB’s Graphics commands are working only with integers. (Of course, 2D algebra
commands are working with reals) That is different of QB, but its much faster.

6.1 The colors

Monochrome

0 = black, 15 = white

2bit (4 colors)
= black, 15 = white, 1-6, 8 = dark-gray, 7, 9-14 = light-gray

4bit (16 colors)
16 Standard VGA colors, 16 colors of gray (on PalmOS)

8bit (256 paletted colors)
16 Standard VGA colors. The rest colors are ignored.

15bit (32K colors), 16bit (64K colors) and 24bit (1.7M colors)
Color 0..15 is the standard VGA colors, full 24-bit RGB colors can be passed
by using negative number.

6.2 The points

Any point can be specified by an array of 2 elements or by 2 parameters
Example:

LINE x1, y1, x2, y2
or
LINE [x1, yil, [x2, y2]

Also, the polylines can work with the same way.
DIM poly(10)

poly[0] = [x, y]

6.3 The STEP keyword

The STEP keyword calculates the next x,y parameters relative to current position. That
position can be returned by using the POINT(0) and POINT(1) functions.

6.4 The ’aspect’ parameter
The x/y factor.
6.5 The FILLED keyword

The FILLED keyword fills the result of the command with the drawing color.

Chapter 6: Graphics & Sound

6.6 Graphics Commands
ARC [STEP] x,y,r,astart,aend [,aspect [,color]] [COLOR color]

Draws an arc. astart,aend = first,last angle in radians.

CHART LINECHART|BARCHART, array() [, type [, x1, y1, x2, y2]|
Draws a chart of array values in the rectangular area x1,y1,x2,y2

Where 'type’:

0 simple

1 with marks

2 with ruler

3 with marks & ruler

PLOT xmin, xmax USE {(x)
Graph of f(x)

Example:
PLOT 0, 2%PI USE SIN(x)

CIRCLE [STEP] x,y,r [,aspect [, color]] [COLOR color] [FILLED)]

b'e
y the circle’s center
r the radius

Draws a circle (or an ellipse if the aspect is specified).

COLOR foreground-color [, background-color]
Specifies the foreground and background colors

DRAWPOLY array [,x-origin,y-origin [, scalef [, color]]] [COLOR color]

[FILLED)]
Draws a polyline

39

[Command]

[Command]|

[Command]|

[Command]|

[Command]|

[Command]|

If the array does not uses points as element arrays, then even elements for x (starting

from 0), odd elements for y

DRAW string

Draws an object according to instructions specified as a string.

[Command|

string - A string expression containing commands in the BASIC graphics definition

language.

Graphics Definition Language

In the movement instructions below, n specifies a distance to move. The number of
pixels moved is equal to n multiplied by the current scaling factor, which is set by

the S command.

Un Move up.
Dn Move down.
Ln Move left.

Rn Move right.

Chapter 6: Graphics & Sound 40

En Move diagonally up and right.

Fn Move diagonally down and right.

Gn Move diagonally down and left.

Hn Move diagonally up and left.

Mx,y Move to coordinate x,y. If x is preceded by a +
or -, the movement is relative to the last point
referenced.

B A prefix command. Next movement command
moves but doesn’t plot.

N A prefix command. Next movement command
moves, but returns immediately to previous
point.

* This command it is had not tested - please report any bug or incompatibility.

LINE [STEP] x,y [,| STEP x2,y2] [, color | COLOR color] [Command]
Draws a line

PSET [STEP] x,y [, color | COLOR color] [Command]
Draw a pixel

RECT [STEP] x,y [,|STEP x2,y2] [, color | COLOR color| [FILLED] [Command|
Draws a rectangular parallelogram

TXTW (s) [Function]

TEXTWIDTH (s) [Function]
Returns the text width of string s in pixels

TXTH (s) [Function]

TEXTHEIGHT (s) [Function]
Returns the text height of string s in pixels

XPOS [Function]

YPOS [Function]
Returns the current position of the cursor in "characters".

POINT (x|, y]) [Function]

Returns the color of the pixel at x,y

if y does not specified x contains the info-code
0 = returns the current X graphics position
1 = returns the current Y graphics position

PAINT [STEP] x, y [,color [,border]] [Command]
Fills an enclosed area on the graphics screen with a specific color.
X
v Screen coordinate (column, row) within the area that is to be filled.
color The fill-color

border The boundary-color

Chapter 6: Graphics & Sound 41

if the border-color is specified then the PAINT will fill all the area which is specified
by the border-color. (fill-until, color!=point(x,y)

if the border-color is NOT specified then the PAINT will fill all the are with the same
color as the pixel at x,y. (fill-while, color=point(x,y))

VIEW |[x1,y1,x2,y2 [,color [,border-colorl]|| [Command]
Defines a viewport.
x1
yl
x2
y2 Corner coordinates of the viewport.
color If included, BASIC fills the viewport with the specified color.

border-color
If included, BASIC draws a border, in a specified color, around the defined
viewport.

The viewport defined by VIEW is disabled by a VIEW command with no parameters.

WINDOW |[x1,y1,x2,y2] [Command|
Specifies "world" coordinates for the screen.
x1
vl
x2
v2 The corner coordinates of the world space.

The WINDOW command allows you to redefine the corners of the display screen as
a pair of "world" coordinates.

The world space defined by WINDOW is disabled by a WINDOW command with no
parameters.

RGB (r, g, b) [Function]
The RGB functions returns the RGB color codes for the specified values The RGB()
takes values 0..255 for each of the color.

The return value is a negative 24bit value to by used by drawing functions.

RGBEF (1, g, b) [Function]
The RGBF functions returns the RGB color codes for the specified values The RGBF()
takes values 0..1 for each of the color.

The return value is a negative 24bit value to by used by drawing functions.

BEEP [Command]|

Generates a beep sound
PLAY string [Command]|
Play musical notes

A-G[-|+|#] [nnn] [.]
Play note A..G, +|# is sharp, - is flat, . is multiplier 1.5

Chapter 6: Graphics & Sound 42

On Octave 0..6, < moves down one octave, > moves up one octave
Nnn Play note 0..84 (0 = pause)
Pnnn Pause 1..64
Lonn Length of note 1..64 (1/nnn)
Tnnn Tempo 32..255. Number of 1/4 notes per minute.
MS Staccato (1/2)
MN Normal (3/4)
ML Legato
Vnnn Volume 0..100
MF Play on foreground
MB Play on background
Q Clear sound queue
SOUND freq, dur_ms [, vol] [BG| [Command]|
Plays a sound
freq The frequency
dur_ms The duration in milliseconds
vol The volume in 1/100 units
BG Play it in background
NOSOUND [Command]|

Stops background sound. Also, clears the sound queue.

Chapter 7: Miscellaneous 43
7 Miscellaneous
RANDOMIZE |int) [Command]|
Seeds the random number generator
RND [Function]
Returns a random number from the range 0 to 1
UBOUND (array [, dim]) [Function]
Returns the upper bound of the ’array’
LBOUND (array [, dim]) [Function]
Returns the lower bound of the ’array’
The parameter ’dim’ is the array dimension whose bound is returned
DIM vi(-4 TO 7)
DIM v2(1 TO 2, 3 TO 4)
PRINT LBOUND(v1) : REM -4
PRINT UBOUND(v1) : REM 7
PRINT LBOUND(v2) : REM 1
PRINT LBOUND(v2,2) : REM 3
CINT (x) [Function]
Converts x to 32b integer Meaningless. Used for compatibility.
CREAL (x) [Function]
Convert x to 64b real number. Meaningless. Used for compatibility.
CDBL (x) [Function]
Convert x to 64b real number. Meaningless. Used for compatibility.
PEN ON|OFF [Command]|
Enables/Disables the PEN/MOUSE mechanism.
PEN (0..14) [Function]
Returns the PEN/MOUSE data.
Values:
0 true (non zero) if there is a new pen or mouse event
1 PEN: last pen down x; MOUSE: last mouse button down x
2 Same as 1 for y
3 true if the PEN is down; MOUSE: mouse left button is pressed
4 PEN: last/current x, MOUSE: the current x position only if the left

mouse button is pressed (like PEN is down)

5 Same as PEN(4) for y

Chapter 7: Miscellaneous 44

Mouse specific (non PalmOS):

10
11
12
13
14

current mouse X pos

current mouse y pos

true if the left mouse button is pressed
true if the right mouse button is pressed

true if the middle mouse button is pressed

* The driver must be enabled before use this function (see Pen command)

PAUSE [secs]

[Command]

Pauses the execution for a specified length of time, or until user hit the keyboard.

SWAP a, b

[Command]

Exchanges the values of two variables. The parameters may be variables of any type.

Chapter 8: File system 45

8 File system

8.1 Special Device Names

"COM1: [speed] "
Serial port 1

"COM2: [speed] "
Serial port 2

"PDOC:filename"
Compressed PDOC files for PalmOS or PDB/PDOC files on other systems.
PDOCFS opens and uncompress the file on OPEN; and compress the file on
CLOSE. So, it will use a lot of memory and time (its depended on size of the
data).

"MEMO:memo-title"
MemoDB of PalmOS or regular file on other systems. Memo records (virtual
files) are limited to 3935 bytes

"SOCL:server:port"
Socket client. Actually a telnet client.

"MMC:filename"
eBookMan only. Opens an MMC file.

Example: OPEN "COMI:" AS #1
OPEN "COM2:38400" AS #2

8.2 File System Commands

FREEFILE [Function]
Returns an unused file handle
OPEN file [FOR INPUT|OUTPUT|APPEND] AS #fileN [Command]|
Makes a file or device available for sequential input, sequential output.
file A string expression that follows OS file naming conventions.
fileN A file-handle (integer 1 to 256).
FOR -
INPUT Sequential input

OUTPUT Sequential output
APPEND Sequential output, beginning at current EOF

The files are always opened as shared.

CLOSE #fileN [Command]|

Close a file or device

Chapter 8: File system 46

TLOAD file, BYREF var [, type] [Command]|
Loads a text file into array variable. Each text-line is an array element.
file A string expression that follows OS file naming conventions.
var Any variable
type 0 = load into array (default), 1 = load into string
TSAVE file, var [Command]
Writes an array to a text file. Each array element is a text-line.
file A string expression that follows OS file naming conventions.
var An array variable or a string variable. Expressions are not allowed for

memory reasons.

EXIST (file) [Function]
Returns true if the file exists
file A string expression that follows OS file naming conventions.

ACCESS (file) [Function]

Returns the access rights of the file.
file A string expression that follows OS file naming conventions.

The return-value is the permissions of the file as them as specified on GNU’s manual
(chmod() and stat() system calls)

The bits (in octal):

04000 set user ID on execution
02000 set group ID on execution
01000 sticky bit

00400 read by owner

00200 write by owner

00100 execute/search by owner
00040 read by group

00020 write by group

00010 execute/search by group
00004 read by others

00002 write by others

00001 execute/search by others

PalmOS The return value is always 0777.

DOS The return value is depended on DJGPP’s stat() function. Possible Unixz com-
patible.

Windows The return value is depended on Cygnus’s stat() function. Possible Uniz
compatible.

IF ACCESS("/bin/sh") AND 0Oo4 THEN
PRINT "I can read it!'"
ENDIF

Chapter 8: File system 47

ISFILE (file) [Function]
Returns true if the file is a regular file.

ISDIR (file) [Function]
Returns true if the file is a directory.

ISLINK (file) [Function]
Returns true if the file is a link.

CHMOD file, mode [Command]|
Change permissions of a file
file A string expression that follows OS file naming conventions.
mode The mode is compatible with the chmod()’s 'mode’ parameter as its de-

scribed on GNU’s manual. See ACCESS() for more information.

> Make myfile available to anyone (read/write)
CHMOD "myfile.bas", 00666

> Make myfile available to anyone (execute/read/write)
CHMOD "myfile.bas", 00777

EOF (fileN) [Function]
Returns true if the file pointer is at end of the file. For COMx and SOCL VFS it
returns true if the connection is broken.

PRINT# fileN, [USING..] ... [Command]
Write string to a file. The syntax is the same with the PRINT command.

* We can use "USG’ instead of "USING’.

LINPUT# [fileN{,|;}] var [Command]

LINEINPUT# [#fileN{,|;}] var [Command]|

LINE INPUT# [fileN{,|;}] var [Command|
Reads a whole text line from file or console.

INPUT (len [, fileN]) [Function]

This function is similar to INPUT. Reads ’len’ bytes from file or console (if fileN is
omitted). This function is a low-level function. That means does not convert the
data, and does not remove the spaces.

INPUTH# fileN; varl [,delim] [, var2 [,delim]] ... [Command]
Reads data from file

BGETC (fileN) [Function]
(Binary mode) Reads and returns a byte from file or device.

BPUTC+# fileN; byte [Command]|
(Binary mode) Writes a byte on file or device

SEEK# fileN; pos [Command]

Sets file position for the next read/write

Chapter 8: File system 48

SEEK (fileN) [Function]
Returns the current file position

LOF (fileN) [Function]
Returns the length of file in bytes. For other devices, it returns the number of available
data.

KILL "file" [Command]
Deletes the specified file

WRITE# fileN; varl [, ...] [Command]|

READ# fileN; varl |, ...] [Command]

The READ/WRITE command set is used to store variables to a file as binary data.
The common problem with INPUT /PRINT set is there are many conflicts with data.
PRINT #1; "Hello, world"

You have wrote only one string and you want read it in one variable, but this is
impossible for INPUT command to understand it, because INPUT finds the separator
comma, o it thinks there are two variables not one.

So, now, you can store arrays, strings etc and what is you write is what you will read
the next time.

BTW its faster too.

* The parameters can be variables ONLY.
* Its very bad idea to mized READ/WRITE commands with INPUT/PRINT com-
mands in the same file.

COPY rfile", "newfile" [Command]
Makes a copy of specified file to the 'newfile’

RENAME "file", "newname" [Command]
Renames the specified file

MKDIR dir [Command]|
Create a directory. This does not working on PalmOS.

CHDIR dir [Command]|
Changes the current working directory. This does not working on PalmOS.

RMDIR dir [Command|

Removes a directory. This does not working on PalmOS.

DIRWALK directory [, wildcards] [USE ...] [Command]
Walk through the directories. The user-defined function must returns zero to stop
the process.

FUNC PRNF (x)
7 X
PRNF=TRUE

END

Chapter 8: File system 49

DIRWALK "." USE PRNF(x)

PalmOS Not supported.

FILES (wildcards) [Function]
Returns an array with the filenames. If there is no files returns an empty array.
? FILES("*")

PalmOS Returns only the user-files.
* To use file on MEMO or PDOC or any other virtual file system you must use
FILES (" VESz:*")

PRINT FILES("MEMO:*")

Chapter 9: Mathematics 50

9 Mathematics

All angles are in radians.

ABS (x) [Function]
Returns the absolute value of x.

MAX (...) [Function]

ABSMAX (...) [Function]

MIN (... [Function]

ABSMIN (... [Function]

Maximum/Minimum value of parameters. Parameters can be anything (arrays, ints,
reals, strings). ABSMIN/ABSMAX returns the absolute min/max value.

7 MAX(3,4,8)
? MIN(array(),2,3)
? MAX("abc","def")

SEQ (xmin, xmax, count) [Function]
Returns an array with 'count’ elements. Each element had the x value of its position.

7 SEQ(0,1,11)

EXPRSEQ BYREF array, xmin, xmax, count USE expression [Command|
Returns an array with 'count’ elements. Each element had the 'y’ value of its position
as it is returned by the expression.

REM same as v=SEQ(0,1,11)
EXPRSEQ v, O, 1, 11 USE x

POW (x, y) [Function]

x raised to power of y

SQR (x) [Function]

Square root of x

SGN (x) [Function]

Sign of x (+1 for positive, -1 for negative and 0 for zero)

9.1 Unit convertion

DEG (x) [Function]

Radians to degrees

RAD (x) [Function]

Degrees to radians

Chapter 9: Mathematics

9.2 Round

INT (x)

Rounds x downwards to the nearest integer

FIX (x)

Rounds x upwards to the nearest integer

FLOOR (x)

Largest integer value not greater than x

CEIL (x)

Smallest integral value not less than x

FRAC (x)

Fractional part of x

ROUND (x [, decs])

Rounds the x to the nearest integer or number with 'decs’ decimal digits.

9.3 Trigonometry

COS (x)

Cosine
SIN (x)

Sine
TAN (x)

Tangent

ACOS ()

Inverse cosine

ASIN (x)

Inverse sine

ATAN (x)
ATN (x)

Inverse tangent

ATAN2 (x,y)

Inverse tangent (x,y)

COSH (x)
SINH (x)
TANH (x)
ACOSH (x)

o1

[Function]
[Function]
[Function]
[Function]
[Function]

[Function]

[Function]
[Function]
[Function]
[Function]
[Function]

[Function]
[Function]

[Function]

Function
Function

[]
[]
[Function]
[]

Function

Chapter 9: Mathematics

ASINH (x)
ATANH ()
SEC (x)

Secant

CSC (x)

Cosecant

COT (x)
Cotangent

ASEC ()

Inverse secant

ACSC ()

Inverse cosecant

ACOT (x)

Inverse cotangent

SECH (x)
CSCH (x)
COTH ()
ASECH (x)
ACSCH (x)
ACOTH (x)

9.4 Logarithms

EXP (x)

Returns the value of e raised to the power of x.

LOG (x)

Returns the natural logarithm of x.

LOG10 (x)

Returns the base-10 logarithm of x.

9.5 Statistics

52

[Function]
[Function]

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]

Function]
Function

Function

Function

]
]
Function]
]
Function]

[Function]
[Function]

[Function]

Sample standard deviation: SQR(STATSPREADS(array)) Population standard deviation:

SQR(STATSPREADP (array))

SUM (...)

Sum of value

[Function]

Chapter 9: Mathematics 53

SUMSQ (...) [Function]
Sum of square value

STATMEAN (...) [Function]
Arithmetical mean

STATMEANDEV (..) [Function]
Mean deviation

STATSPREADS (...) [Function]
Sample spread

STATSPREADP (...) [Function]

Population spread

9.6 Equations

LINEQN (a, b [, toler]) [Function]
Returns an array with the values of the unknowns. This function solves equations by
using the Gauss-Jordan method.

b equations
b results
toler tolerance number. (the absolute value of the lowest acceptable number)

default = 0 = none...

|x| <= toler : x =0

* The result is a matriz Nxl. For the SB that array is two-dimension array.

INVERSE (A) [Function]

returns the inverse matrix of A.

DETERM (A], toler]) [Function]

Determinant of A

toler = tolerance number (the absolute value of the lowest acceptable number) default
= 0 = none
[x| <=toler : x =10

ROOT Iow, high, segs, maxerr, BYREF result, BYREF errcode USE [Command)|

expr
Roots of F(x)

low the lower limit
high the upper limit
segs the number of segments (spaces)

maxerr tolerance (IF ABS(F(x)) < maxerr THEN OK)

Chapter 9: Mathematics

errcode 0 for success; otherwise calculation error
result the result
FUNC F(x)
F = SIN(x)
END

ROOT 1, 5, 500, 0.00001, result, errcode USE F(x)

DERIV x, maxtries, maxerr, BYREF result, BYREF errcode USE expr
Calculation of derivative

X
maxtries
maxerr
errcode

result

value of x

maximum number of retries

tolerance

0 for success; otherwise calculation error

the result

DIFFEQN x0, y0, xf, maxseg, maxerr, BYREF yf, BYREF errcode
USE expr
Differential equation - Runge-Kutta method

x0
y0
xt
maxseg

maxerr

errcode

yf

initial x,y

x final

maximum number of segments on x

tolerance (acceptable error between the last 2 times)
0 for success; otherwise calculation error

the result

54

[Command]|

[Command]|

Chapter 10: 2D Algebra

10 2D Algebra

SEGCOS (Ax,Ay,Bx,By,Cx,Cy,Dx,Dy)
SEGSIN (Ax,Ay,Bx,By,Cx,Cy,Dx,Dy)
Sinus or cosine of 2 line segments (A->B, C->D).

PTDISTSEG (Bx,By,Cx,Cy,Ax,Ay)

Distance of point A from line segment B-C

PTDISTLN (Bx,By,Cx,Cy,Ax,Ay)
Distance of point A from line B, C

PTSIGN (Ax,Ay,Bx,By,Qx,Qy)
The sign of point Q from line segment A->B

SEGLEN (Ax,Ay,Bx,By)
Length of line segment

POLYAREA (poly)
Returns the area of the polyline poly.

POLYEXT poly(), BYREF xmin, BYREF ymin, BYREF xmax,
BYREF ymax
Returns the polyline’s extents

INTERSECT Ax, Ay, Bx, By, Cx, Cy, Dx, Dy, BYREF type, BYREF
Rx, BYREF Ry
Calculates the intersection of the two line segments A-B and C-D

Returns: Rx,Ry = cross

type = cross-type

0 No cross (R = external cross)

1 One cross

2 Parallel

3 Parallel (many crosses)

4 The cross is one of the line segments edges.

10.1 2D & 3D graphics transformations

2D & 3D graphics transformations can represented as matrices.
(c=cos, s=sin)
M3IDENT BYREF m3x3

Resets matrix (Identity)

| 1 0 0|

95

[Function]
[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Command]|

[Command]

[Command]|

Chapter 10: 2D Algebra 56

M3ROTATE BYREF m3x3, angle [, x, y] [Command]|
Rotate by angle with center x,y

| ¢ s 0|
| -s ¢ 0 |
[*x *x 1 |

M3SCALE BYREF m3x3, x, y, Sx, Sy [Command)|
Scaling
| sx 0 O |
| 0SSy O |
| % % 1 |

M3TRANS BYREF m3x3, Tx, Ty [Command]|
Translation

| 1 0 0|
| 0 1 0
| Tx Ty 1 |

M3APPLY m3x3, BYREF poly [Command]
Apply matrice to poly-line
Additional information:
| 1 0 0|
| 0-1 0|
| 0 0 1]

reflection on x

| -1 0 0|
| 0 1 0|
| 0 0 1|
3D-Graphics Matrices:
1 0 0 Tx |
0 Ty |
1 Tz |
0 1|

reflection on y

translation

o O O

1
0
0

S

™

scaling

o O O
n
o< O
o
= O O O

rotation on x

O O O =
o n o O
|
n
= O O O

[@2Ne]
= O
o m
o O
]

rotation on y

Chapter 10: 2D Algebra

| -s c 0]
| 0 0 1|
| ¢c-s 0 0|
| s ¢ 0 0| = rotation on z
| o0 0 1 0|
| 0 0 O 1|

Any change to matrix will combined with its previous value.
DIM poly(24)
DIM M(2,2)
M3IDENT M
M3ROTATE M, pi/2, 0, O
M3SCALE M, 0, 0, 1.24, 1.24

> Draw the original polyline
DRAWPOLY poly

> Draw the polyline

> rotated by pi/2 from 0,0 and scaled by 1.24
M3APPLY M, poly

DRAWPOLY poly

Chapter 11: Strings

11 Strings

SPC (n)
SPACE (n)

returns a string of 'n’ spaces

BIN (x)
Returns the binary value of x as string.
OCT (x)
Returns the octal value of x as string.
HEX (x)
Returns the hexadecimal value of x as string.
VAL (s)
Returns the numeric value of string s.
STR (x)
Returns the string value of x.
CBS (s)
BCS (s)
CBS() - converts (C)-style strings to (B)ASIC-style (S)trings
BCS() - converts (B)ASIC-style strings to (C)-style (S)trings

C-Style string means strings with \ codes

o8

[Function]
[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]
[Function]

* On CBS() we cannot use the “ character but we can replace it with “x22 or “042.

ASC (s)
Returns the ASCII code of first character of the string s.

CHR (x)

Returns one-char string of character with ASCII code x.

LOWER (s)
LCASE (s)
UPPER (s)
UCASE (s)
Converts the string s to lower/upper case
? LOWER("Hi") :REM hi
? UPPER("Hi") :REM HI

LTRIM (s)

Removes leading white-spaces from string s
7 LEN(LTRIM(" Hi")):REM 2

RTRIM (s)

Removes trailing white-spaces from string s

[Function]
[Function]

[Function]
[Function]
[Function]
[Function]

[Function]

[Function]

Chapter 11: Strings

TRIM (s)
Removes leading and trailing white-spaces from string s. TRIM
LTRIM(RTRIM(s))

SQUEEZE (s)

Removes the leading/trailing and duplicated white-spaces

? "["; SQUEEZE(" Hi there "); "]"
> Result: [Hi there]

ENCLOSE (str], pair])

Encloses a string. The default pair is ""

? enclose("abc", "O")
> Result: (abc)

DISCLOSE (str|, pairs [, ignore-pairs]])

Discloses a string.

Default pairs and ignore pairs

First

non white-space

character Check Ignore
n nn 10

)) nn

(() mnmnoj o
[[] nnoo
{ {} nno o
< <> nnoso
Otherwise:

n nn)0

s = "abc (abc)"

? s; tab(26); disclose(s, "O")
> prints abc
s = "abc (a(bc))"

? s; tab(26); disclose(s, "()"); tab(40); disclose(disclose(s, "O"),

> prints a(bc), bc

= "abc (a=’(bc)’)"

s; tab(26); disclose(s, "(O", "?’"); tab(40); &
disclose(disclose(s, "(Q", "22m), v, n2on)

> prints a=’(bc)’, nothing

N 0

LEFT (s[,n])
RIGHT (s[,n])

99

[Function]
is equal to

[Function]

[Function]

[Function]

[Function]
[Function]

Returns the n number of leftmost /rightmost chars of string s If n is not specified, the

SB uses 1

"O"N

Chapter 11: Strings 60

LEFTOF (s1, s2) [Function]

RIGHTOF (s1, s2) [Function]
Returns the left /right part of sl at the position of the first occurrence of the string
s2 into string sl

* 52 does not included on new string.

LEFTOFLAST (s1, s2) [Function]

RIGHTOFLAST (s1, s2) [Function]
Returns the left /right part of s1 at the position of the last occurrence of the string s2
into string sl

* $2 does not included on new string.

MID (s, start [,length]) [Function]
Returns the part (length) of the string s starting from ’start’ position

If the ’length’ parameter is omitted, MID returns the whole string from the position
‘start’.

INSTR ([start,] s1, s2) [Function]
Returns the position of the first occurrence of the string s2 into string sl (starting
from the position ’start’)

If there is no match, INSTR returns 0

RINSTR ([start,] s1, s2) [Function]
Returns the position of the last occurrence of the string s2 into string sl (starting
from the position ’start’)

If there is no match, RINSTR returns 0

REPLACE (source, pos, str |, len]) [Function]

Writes the ’str’ into 'pos’ of 'source’” and returns the new string.

This function replaces only ’len’ characters. The default value of ’len’ is the length of

‘str’.

s="123456"
’ Cut
? replace(s,3,"",len(s))

> Replace
? replace(s,2,"bcd")

> Insert
? replace(s,3,"cde",0)

> Replace & insert
? replace(s,2,"RRI",2)

Chapter 11: Strings 61

TRANSLATE (source, what [, with]) [Function]
Translates all occurrences of the string 'what’ found in the ’source’ with the string
'with’ and returns the new string.

? Translate("Hello world", "o", "O")
> displays: HellO wOrld

CHOP (source) [Function]
Chops off the last character of the string ’source’ and returns the result.
STRING (len, {asciil str}) [Function]
Returns a string containing 'len’ times of string ’str’ or the character ’ascii’.
FORMAT (format, val) [Function]
Returns a formated string.
Numbers:
Digit or space
0 Digit or zero
- Stores a number in exponential format. Unlike QB’s USING format this
is a place-holder like the #.
The position of the decimal point.
, Separator.
- Stores minus if the number is negative.
+ Stores the sign of the number.
Strings:
& Stores a string expression without reformatting it.
! Stores only the first character of a string expression.
\ A\ Stores only the first n + 2 characters of a string expression, where n is

the number of spaces between the two backslashes. Unlike QB, there can
be literals inside the \ \. These literals are inserted in the final string.

7 FORMAT("#,##0", 1920.6) : REM prints 1,921
? FORMAT("\ - \", "abcde") : REM prints "abc-de"

SPRINT var; [USING...]] ... [Command]
Create formated string and storing it to var The syntax is the same with the PRINT
command.

SPRINT s; 12.34; TAB(12); 11.23;

* You can use 'USG’ instead of "USING".

SINPUT src; var [, delim] [,var [, delim]] ... [Command]
Splits the string ’src’ into variables which are separated by delimiters.

Chapter 11: Strings 62

SINPUT "if x>1 then y"; vif, " ", vcond, "then", vdo
? vcond, vdo

’ result in monitor

x>l y

SPLIT string, delimiters, words() [, pairs] [USE expr] [Command]|
Returns the words of the specified string into array 'words’

Example:

s="/etc/temp/filename.ext"

SPLIT s, "/.", vO)

FOR i=0 TO UBOUND(v)
PRINT i;" [";v(i);"]"

NEXT

)

displays:

(]

letc]

[temp]

[filename]

[ext]

> W NN = O

JOIN words(), delimiters, string [Command]|
Returns the words of the specified string into array 'words’

Example:

s="/etc/temp/filename.ext"
SPLIT s, "/.", vO)

JOIN v(O), "/", s

PRINT "[";s;"]"

)

displays:
[/etc/temp/filename/ext]

Chapter 12: Console

12 Console

12.1 Supported console codes

* “e = CHR(27)
\t tab (32 pixels)
\a beep
\r\n new line (cr/If)
\xC clear screen
\e[K clear to EOL
\e[nG moves cursor to specified column
\e[0Om reset all attributes to their defaults
\e[lm set bold on
\e[4m set underline on
\e[7Tm reverse video
\e[21m set bold off
\e[24m set underline off
\e[27m set reverse off
\e[3nm set foreground

color. where n:

0 black

1 red

2 green

3 brown

4 blue

5 magenta

6 cyan

7 white
\e[4nm set background color.

(see set foreground)
PalmOS only:

\e[8nm (n=0..7) select system font
\e[9nm (n=0..3) select buildin font

eBookMan only:

\e[50m select 9pt font

\e[51m select 12pt font

\e[52m select 16pt font
[

\e[nT move to n/80th screen character position

Chapter 12: Console 64

12.2 Console Commands

PRINT [USING [format];] [expr|str [{,];} [expr|str]] ... [Command]|
Displays a text or the value of an expression.

PRINT SEPARATORS

TAB(n) Moves cursor position to the nth column.

SPC(n) Prints a number of spaces specified by n.

; Carriage return/line feed suppressed after printing.

, Carriage return/line feed suppressed after printing.
A TAB character is placed.

The PRINT USING

Print USING, is using the FORMAT() to display numbers and strings. Unlike the
FORMAT, this one can include literals, too.

_ Print next character as a literal. The com-

bination _#, for
example, allows you to include a number sign

as a literal
in your numeric format.

[other] Characters other than the foregoing may be

included as
literals in the format string.

* When a PRINT USING command is executed the format will remains on the mem-
ory until a new format is passed. Calling a PRINT USING without a new format
specified the PRINT will use the format of previous call.
Examples:

PRINT USING "##: #,###,##0.00";

FOR i=0 TO 20

PRINT USING; i+1, A(i)
NEXT

PRINT USING "Total ###,##0 of \ \"; number, "bytes"

* The symbol ? can be used instead of keyword PRINT You can use 'USG’ instead of

"USING".
CAT (x) [Function]
Returns a console codes
0 reset
1 bold on
-1 bold off
2 underline on
-2 underline off
3 reverse on

-3 reverse off

Chapter 12: Console

PalmOS only:

80..87 select system font
90..93 select custom font
Example:

? cat(1);"Bold";cat(0)

INPUT [prompt {,|;}] var|, var [, ...]]

Reads from "keyboard" a text and store it to variable.

LINPUT var
LINEINPUT var
LINE INPUT var

Reads a whole text line from console.

INKEY

65

[Command]|

[Command]|
[Command]|
[Command|

[Function]

This function returns the last key-code in keyboard buffer, or an empty string if there

are no keys.

Special key-codes like the function-keys (PC) or the hardware-buttons (PalmOS) are

returned as 2-byte string.
Example:

k=INKEY
IF LEN(k)
IF LEN(k)=2
7 "H/W #"+ASC(RIGHT(k,1))
ELSE
7 k; " "; ASC(k)
FI
ELSE
? "keyboard buffer is empty"
FI

CLS

Clears the screen.

AT x, y

Moves the console cursor to the specified position. x,y are in pixels

LOCATE y, x

[Command|

[Command|

[Command]|

Moves the console cursor to the specified position. x,y are in character cells.

Appendix A: Interactive Mode 66

Appendix A Interactive Mode

Like a shell, SB can run interactively. The Interactive Mode offers an old-style coding taste.
Also, it is offers a quick editing/testing tool for console mode versions of SB.

The Interactive Mode can be used as a normal command-line shell. It executes shell com-
mands as a normal shell, but also, it can store/edit and run SB programs. However we
suggest to use an editor.

e We can use the [TAB] for autocompletion (re-edit program lines or filename completi-
tion).
e We can use [ARROWS] for history.

e There is no need to type line numbers, there will be inserted automagically if you use
'+’ in the beginning of the line.

e There is no need to type line numbers, use NUM.

e Line numbers are not labels, are used only for editing. Use keyword LABEL to define a
label.

e Line numbers are not saved in files.

A.1 Interactive Mode Commands

HELP [sb-keyword] [Command]|
Interactive mode help screen. The symbol ’?’ does the same.

BYE [Command]|

QUIT [Command]

EXIT [Command|
The BYE command ends SmallBASIC and returns the control to the Operating Sys-
tem.

NEW [Command]|

The NEW command clears the memory and screen and prepares the computer for a
new program. Be sure to save the program that you have been working on before you
enter NEW as it is unrecoverable by any means once NEW has been entered.

RUN [filename] [Command]|
The RUN command, which can also be used as a statement, starts program execution.

CLS [Command]|

Clears the screen.

LIST { [start-line] - [end-line] } [Command]
The LIST command allows you to display program lines. If LIST is entered with no
numbers following it, the entire program in memory is listed. If a number follows the
LIST, the line with that number is listed. If a number followed by hyphen follows
LIST, that line and all lines following it are listed. If a number preceeded by a hyphen
follows LIST, all lines preceeding it and that line are listed. If two numbers separated
by a hyphen follow LIST, the indicated lines and all lines between them are listed.

Appendix A: Interactive Mode 67

RENUM ({ [initial-line] [,] [increment] } [Command]
The RENUM command allows you to reassign line numbers.

ERA { [start-lin€] - [end-line] } [Command]
The ERA command allows you to erase program lines. If ERA is entered with no
numbers following it, the entire program in memory is erased. If a number follows the
ERA, the line with that number is erased. If a number followed by hyphen follows
ERA, that line and all lines following it are erased. If a number preceeded by a
hyphen follows ERA, all lines preceeding it and that line are erased. If two numbers
separated by a hyphen follow ERA, the indicated lines and all lines between them are
erased.

NUM [initial-line [, increment]] [Command]
The NUM command sets the values for the autonumbering. If the ’initial-line’ and
increment’ are not specified, the line numbers start at 10 and increase in increments

of 10.

SAVE program-name [Command]
The SAVE command allows you to copy the program in memory to a file. By using
the LOAD command, you can later recall the program into memory.

LOAD program-name [Command]
The LOAD command loads ’program-name’ file into memory. The program must
first have been put on file using the SAVE command. LOAD removes the program
currently in memory before loading 'program-name’.

MERGE program-name, line-number [Command|
The MERGE command merges lines in 'program-name’ file into the program lines
already in the computer’s memory. Use ’line-number’ to specify the position where
the lines will be inserted.

CD [path] [Command]|
Changed the current directory. Without arguments, displays the current directory.
DIR [regexp] [Command]
DIRE [regexp] [Command]
DIRD [regexp] [Command]|
DIRB [regexp] [Command]|

Displays the list of files. You can use DIRE for executables only or DIRD for direc-
tories only, or DIRB for BASIC sources.

TYPE filename [Command]
Displays the contents of the file.

Appendix B: MySQL Module 68

Appendix B MySQL Module

MYSQL.CONNECT (host, database, user, [password]) [Function]
Connects/reconnects to the server

MYSQL.QUERY (handle, sqlstr) [Function]
Send command to mysql server

MYSQL.DBS (handle) [Function]
Get a list of the databases

MYSQL.TABLES (handle) [Function]
Get a list of the tables

MYSQL.FIELDS (handle, table) [Function]
Get a list of the fields of a table

MYSQL.DISCONNECT handle [Command]|
Disconnects

MYSQL.USE handle, database [Command]

Changes the current database

Example:

import mysql

h = mysql.connect("localhost",
? "Handle = "; h

? "DBS = "; mysql.dbs(h)

7 "TABLES = "; mysql.tables(h)
? "Query =

mysql.disconnect h

"mydatabase", "user", "password")

"; mysql.query(h, "SELECT * FROM sbx_counters")

Appendix C: GDBM Module 69

Appendix C GDBM Module

Example:

import gdbm

const GDBM_WRCREAT = 2 ’ A writer. Create the db if needed.

EVIRECVIREENVINRE VN =

TEST

= gdbm.open("dbtest.db", 512, GDBM_WRCREAT, 00666)
"Handle = "; h

"Store returns = "; gdbm.store(h, "keyl", "datal....")

"; gdbm.store(h, "key2", "data2....")
"; gdbm.fetch(h, "keyl")

"Store returns
"Fetch returns

gdbm.close h

Appendix D: Limits

Appendix D Limits

70

D.1 Typical 32bit system

Bytecode size

Length of text lines
User-defined keyword length
Maximum number of parameters
Numeric value range
Maximum string size
Number of file handles
Number of array-dimensions
Number of colors
Background sound queue size
INPUT (console)
COMMANDS$

4 GB

4095 characters

128 characters

256

64 bit FPN (-/+ 1E+308)

2 GB

256

6

24 bit (0-15=VGA, <0=RGB)
256 notes

1023 characters per call, up to 16 variables
1023 bytes

System events are checked every 50ms

D.2 PalmOS (Typical 16bit system)

Length of text lines

Maximum number of parameters
User-defined keyword length
Number of array-dimensions
Maximum string size

Number of file handles

Number of elements/array
Bytecode size

INPUT (console)

COMMANDS$

511 characters

32

32 characters

3

<32 KB

16

2970 (that means 64KB of memory)

<64 KB (by using CHAIN you can run progs > 64KB)
255 characters per call, up to 16 variables

127 bytes

Appendix E: Writting Modules 71

Appendix E Writting Modules

* Modules are working only at Linux for now *

Modules are dynamic-linked libraries. The modules are "connected" with the SmallBASIC
with a two-way style. That means, the module can execute functions of SB’s library.

Module programmers will need to use variable’s API to process parameters, and return
values. Also, the device’s API must be used because SB can run in different environments,
of course module authors can use other C or other-lib functions to do their jobs.

Every module must implements the following C functions.

int sblib_proc_count()
Returns the number of procedures of the module.

int sblib_func_count()
Returns the number of functions of the module.

int sblib_proc_getname(int index, char *name)
Fills the 'name’ variable with the name of the ’index’-th procedure. Returns 1
on success or 0 on error.

int sblib_func_getname(int index, char *name)
Fills the 'name’ variable with the name of the ’index’-th function. Returns 1
on success or 0 on error.

int sblib_proc_exec(int index, int param_count, slib_par_t *params, var_t *retval)
Executes the ’index’ procedure. Returns 1 on success or 0 on error.

int sblib_func_exec(int index, int param_count, slib_par_t *params, var_t *retval)
Executes the 'index’ function. Returns 1 on success or 0 on error.

The slib_par_t structure contains two fields. The var_p which is a var_t structure (a SB
variable), and the byref which is true if the variable can be used as by-reference.

E.1 Variables API

Variables had 4 types. This type is described in .type field.
Values of .type

V_STR String. The value can be accessed at .v.p.ptr.
V_INT Integer. The value can be accessed at .v.i.
V_REAL Real-number. The value can be accessed at .v.n.

V_ARRAY
Array. The .v.a.ptr is the data pointer (sizeof(var_t) * size). The .v.a.size is
the number of elements. The .v.a.lbound[MAXDIM] is the lower bound values.
The .v.a.ubound[MAXDIM] is the upper bound values. The .v.a.maxdim is the
number of dimensions.

*

Example:

Appendix E: Writting Modules 72

/*

* Displays variable data.

* If the variable is an array, then this function

* runs recursive, and the ’level’ parameter is used.

*/
static void print_variable(int level, var_t *variable)
{
int 1i;
/* if recursive; place tabs */
for (i =0; i < level; i ++)
dev_printf ("\t");
/* print variable */
switch (variable->type) A
case V_STR:
dev_printf ("String =\"%s\"\n", variable->v.p.ptr);
break;
case V_INT:
dev_printf ("Integer = %ld\n", variable->v.i);
break;
case V_REAL:
dev_printf("Real = %.2f\n", variable->v.n);
break;
case V_ARRAY:
dev_printf ("Array of %d elements\n", variable->v.a.size);
for (i = 0; i < variable->v.a.size; i ++) {
var_t *element_p;
element_p = (var_t *) (variable->v.a.ptr + sizeof(var_t) * 1i);
print_variable(level+l, element_p);
}
break;
}
}

E.1.1 Gereric

void v_free(var_t *var)
This function resets the variable to 0 integer.

void v_free(var_t *var)
This function deletes the contents of varible var.

var_t* v_new()
Creates a new variable and returns it. The returned variable it must be freed
with both, v_free() and free() functions.

Appendix E: Writting Modules 73

var_t *v_clone(const var_t *source)
Returns a new variable which is a clone of source. The returned variable it
must be freed with both, v_free() and free() functions.

void v_set(var_t *dest, const var_t *src)
Copies the src to dest.

Example

void myfunc ()
{

var_t myvar;
v_init (&myvar) ;

v_free (&myvar) ;

E.1.2 Real Numbers

double v_getreal(var_t *variable)
Returns the floating-point value of a variable. if variable is string it will con-
verted to double.

void v_setreal(var_t *var, double number)
Sets the number real-number value to var variable.

E.1.3 Integer Numbers

double v_igetnum(var_t *variable)
Returns the floating-point value of a variable. if variable is string it will con-
verted to double.

void v_setint(var_t *var, int32 number)
Sets the number integer-number value to var variable.

E.1.4 Strings

void v_tostr(var_t *arg)
Converts variable arg to string.

char* v_getstr(var_t *var)
Returns the string-pointer of variable var. If the var is not a string, it must be
converted to string with the v_tostr() function.

void v_zerostr(var_t *var)
Resets the variable var to a zero-length string.

void v_setstr(var_t *var, const char *string)
Sets the string value string to the variable var.

Appendix E: Writting Modules 74

void v_strcat(var_t *var, const char *string)
Adds the string string to string-variable var.

void v_setstrf(var_t *var, const char *fmt, ...)
Sets a string value to variable var using printf() style. The buffer size is limited
to 1KB for OS_.LIMITED (PalmOS), otherwise 64kB.

E.1.5 Arrays

SB arrays are always one-dimension. The multiple dimensions positions are calculated at
run-time. Each element of the arrays is a ‘var_t’ object.

var_t* v_elem(var_t *array, int index)
Returns the variable pointer of the element index of the array. index is a
zero-based, one dimention, index.

int v_asize(var_t *array)
Returns the number of the elements of the array.

void v_resize_array(var_t *array, int size)
Resizes the 1-dimention array.

void v_tomatrix(var_t *var, int r, int c)
Converts the variable var to an array of r rows and ¢ columns.

void v_toarrayl(var_t *var, int n)
Converts the variable var to an array of n elements.

void v_setintarray(var_t *var, int32 *itable, int count)
Makes variable var an integer array of count elements. The values are specified
in itable.

void v_setrealarray(var_t *var, double *rtable, int count)
Makes variable var a real-number array of count elements. The values are
specified in rtable.

void v_setstrarray(var_t *var, char **ctable, int count)
Makes variable var a string array of count elements. The values (which are
copied) are specified in ctable.

Example
void myfunc ()
{
int c_array[] = { 10, 20, 30 };

var_t myvar;

v_init (&myvar) ;
v_setintarray(&myvar, c_array, 3);
v_free(&myvar) ;

Appendix E: Writting Modules 75

E.2 Typical Module Source

This is a typical example of a module with one Function and and one Command. The
command "CMDA" displays its parameters, and the function "FUNCA" returns a string.

— mymod.c —

#include <extlib.h>

/%
* Displays variable data.
* If the variable is an array, then runs recursive, the

* ’level’ parameter is the call level.
*/
static void print_variable(int level, var_t *param)
{
int 1i;

/* if recursive; place tabs */
for (i =0; i < level; i ++)
dev_printf ("\t");

/* print variable */

switch (param->type) A

case V_STR:
dev_printf ("String =\"%s\"\n", param->v.p.ptr);
break;

case V_INT:
dev_printf ("Integer = %1d\n", param->v.i);
break;

case V_REAL:
dev_printf("Real = %.2f\n", param->v.n);
break;

case V_ARRAY:
dev_printf ("Array of ’%d elements\n", param->v.a.size);
for (i =0; i < param—>v.a.size; i ++) {

var_t *element_p;

element_p = (var_t *) (param->v.a.ptr + sizeof(var_t) * i);
print_variable(level+l, element_p);
}

break;

¥

/* typical command */
void m_cmdA(int param_count, slib_par_t #*params, var_t *retval)

{

Appendix E: Writting Modules

int 1i;

for (i =0; i < param_count; i ++) {
param = params[i].var_p;
print_variable(0, param);

}

/* typical function */
int m_funcA(int param_count, slib_par_t *params, var_t *retval)
{

v_setstr(retval, "funcA() works!");

return 1; /* success */

/* the node-type of function/procedure tables */
typedef struct {
char *name; /* the name of the function */
int (*command) (slib_par_t *, int, var_t *);
} mod_kw;

/* functions table */

static mod_kw func_names[] =

{

{ "FUNCA", m_funcA }, // function A
{ NULL, NULL }

};

/* commands table */

static mod_kw proc_names[] =

{

{ "CMDA", m_cmdA }, // command A
{ NULL, NULL }

};

/* returns the number of the procedures */
int sblib_proc_count(void)

{
int i;
for (i = 0; proc_names[i].name; i ++);
return i;

}

/* returns the number of the functions */
int sblib_func_count(void)

{

76

Appendix E: Writting Modules 7

int 1i;

for (i = 0; func_names[i] .name; i ++);
return i;

/* returns the ’index’ procedure name */
int sblib_proc_getname(int index, char *proc_name)
{
strcpy(proc_name, proc_names[index] .name);
return 1;

/* returns the ’index’ function name */
int sblib_func_getname(int index, char *proc_name)

{
strcpy(proc_name, func_names[index].name);
return 1;

/* execute the ’index’ procedure */
int sblib_proc_exec(int index, int param_count,

slib_par_t *params, var_t *retval)
{ return proc_names[index].command(params, param_count, retval); }

/* execute the ’index’ function */
int sblib_func_exec(int index, int param_count,

slib_par_t *params, var_t *retval)
{ return func_names[index].command(params, param_count, retval); }

E.3 Typical Module Makefile

This is a typical Makefile. In our example the module name is 'mymod’ and its source is
the 'mymod.c’. Also, our module is requires the 'mysqlclient’ library to be linked together.

The variables of Makefile

MODNAME
The name of the module

MODLIBS
The libraries that are required by the module.

MODIDIR
The SB’s module directory. There will be installed the module.

CINC "Include’ path. This must points to the SB source files.
CFLAGS Compilers flags.
— Makefile —

Appendix E: Writting Modules 78

MODNAME=mymod

MODLIBS=-1mysqlclient
MODIDIR=/usr/lib/sbasic/modules
CINC=-I/opt/sbasic/source

CFLAGS=-Wall -fPIC $(CINC) -D_Unix0S -DLNX_EXTLIB

all: $(MODIDIR)/$(MODNAME) .so

$ (MODIDIR)/$ (MODNAME) .so: $(MODNAME) .c
-mkdir -p $(MODIDIR)
gcc $(CFLAGS) -c $(MODNAME).c -o $(MODNAME).o
gcc -shared -Wl,-soname,$(MODNAME) .so -o $(MODNAME) .so $(MODNAME).o $(MODLIBS)J
mv $ (MODNAME) .so $(MODIDIR)
ldconfig -n $(MODIDIR)

clean:
-rm -f *.so0 *.o $(MODIDIR)/$(MODNAME).so

Appendix F: Glossary 79

Appendix F Glossary

What it could be good to know.

ANSI The American National Standards Institute. This organization produces many
standards, among them the standards for the C and C++ programming lan-
guages. See also "ISO".

Program An program consists of a series of commands, statements, and expressions. The
program executed by an interpreted language command by command until it

ends.
Script Another name for an program. ...
Bit Short for "Binary Digit". All values in computer memory ultimately reduce to

binary digits: values that are either zero or one.

Computers are often defined by how many bits they use to represent integer
values. Typical systems are 32-bit systems, but 64-bit systems are becoming
increasingly popular, and 16-bit systems are waning in popularity.

Character Set
The set of numeric codes used by a computer system to represent the characters
(letters, numbers, punctuation, etc.) of a particular country or place. The
most common character set in use today is ASCII (American Standard Code
for Information Interchange). Many European countries use an extension of

ASCII known as ISO-8859-1 (ISO Latin-1).

Compiler A program that translates human-readable source code into machine-executable
object code. The object code is then executed directly by the computer or by
a virtual-machine. See also "Interpreter".

Deadlock The situation in which two communicating processes are each waiting for the
other to perform an action.

Environment Variables
A collection of strings, of the form name=val, that each program has available
to it. Users generally place values into the environment in order to provide in-
formation to various programs. Typical examples are the environment variables
HOME and PATH.

Escape Sequences
A special sequence of characters used for describing nonprinting characters,
such as ‘\n’ for newline or ‘\033’ for the ASCII ESC (Escape) character.

Flag A variable whose truth value indicates the existence or nonexistence of some
condition.

Free Software Foundation
FSF A nonprofit organization dedicated to the production and distribution of freely
distributable software. It was founded by Richard M. Stallman.

GNU General Public License

GNU GPL
This document describes the terms under which binary library archives or
shared objects, and their source code may be distributed.

Appendix F: Glossary 80

GMT

GNU

With few words, GPL allows source code and binary forms to be used copied
and modified freely.

"Greenwich Mean Time". It is the time of day used as the epoch for Unix and
POSIX systems.

"GNU’s not Unix". An on-going project of the Free Software Foundation to
create a complete, freely distributable, POSIX-compliant computing environ-
ment.

GNU/Linux

A variant of the GNU system using the Linux kernel, instead of the Free Soft-
ware Foundation’s Hurd kernel. Linux is a stable, efficient, full-featured clone
of Unix that has been ported to a variety of architectures. It is most popular on
PC-class systems, but runs well on a variety of other systems too. The Linux
kernel source code is available under the terms of the GNU General Public
License, which is perhaps its most important aspect.

Hexadecimal

1/0

Interpreter

ISO

Base 16 notation, where the digits are 0-9 and A-F, with ‘A’ representing 10, ‘B’
representing 11, and so on, up to ‘F’ for 15. Hexadecimal numbers are written
in SB using a leading ‘0x’ or ‘&H’, to indicate their base. Thus, 0x12 is 18 (1
times 16 plus 2).

Abbreviation for "Input/Output", the act of moving data into and/or out of a
running program.

A program that reads and executes human-readable source code directly. It
uses the instructions in it to process data and produce results.

The International Standards Organization. This organization produces inter-
national standards for many things, including programming languages, such as
C and C++.

Lesser General Public License

LGPL

Octal

POSIX

Private

Recursion

Redirection

This document describes the terms under which binary library archives or
shared objects, and their source code may be distributed.

Base-eight notation, where the digits are 0-7. Octal numbers are written in SB
using a leading ‘&o’, to indicate their base. Thus, &013 is 11 (one times 8 plus
3).

The name for a series of standards that specify a Portable Operating System
interface. The "IX" denotes the Unix heritage of these standards.

Variables and/or functions that are meant for use exclusively by this level of
functions and not for the main program. See LOCAL, "Nested Functions".

When a function calls itself, either directly or indirectly.

Redirection means performing input from something other than the standard
input stream, or performing output to something other than the standard out-
put stream.

Appendix F: Glossary 81

In Unices, you can redirect the output of the print statements to a file or a
system command, using the >’ >>’ ‘|’ and ‘|&’ operators. You can redirect
input to the INPUT statement using the ‘<’, ‘|’, and ‘&’ operators.

RegExp

Regulat Expression
Short for regular expression. A regexp is a pattern that denotes a set of strings,
possibly an infinite set. For example, the regexp ‘R.*xp’ matches any string
starting with the letter ‘R’ and ending with the letters ‘xp’.

Search Path
In SB, a list of directories to search for SB program files. In the shell, a list of
directories to search for executable programs.

Seed The initial value, or starting point, for a sequence of random numbers.

Shell The command interpreter for Unix, POSIX-compliant systems, DOS and
WinNT/2K/XP (CMD). The shell works both interactively, and as a
programming language for batch files, or shell scripts.

Unix A computer operating system originally developed in the early 1970’s at AT&T
Bell Laboratories. It initially became popular in universities around the world
and later moved into commercial environments as a software development sys-
tem and network server system. There are many commercial versions of Unix,
as well as several work-alike systems whose source code is freely available (such
as GNU/Linux, NetBSD, FreeBSD, and OpenBSD).

Appendix G: GNU Free Documentation License 82

Appendix G GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix G: GNU Free Documentation License 83

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix G: GNU Free Documentation License 84

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

O

Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix G: GNU Free Documentation License 85

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

Appendix G: GNU Free Documentation License 86

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

y

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may

Appendix G: GNU Free Documentation License 87

10.

include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

G.1 ADDENDUM: How to use this License for your

documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead
of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

http://www.gnu.org/copyleft/

Appendix H: Command Index 88

Appendix H Command Index

CHMOD . ..ottt AT
B 12 CHOP.co 61
Binc: 12 CHR ..o 58
B o 12 CINT ..ot 43
BUNIT-path: - oo\ 19 CIRCLE........witiiiiiaiiiaiiaaen, 39
CLOSE . o v et e e e e 45
CLS e et e 65, 66
A [¢10) 70 R 39
WS 5o CONST............. 24
BBSMAX . . oo oo 50 gng """""""""""""""""""""" ?ﬁ
ABSMIN ..ot B0 ooy o
ACCESS . oo et 46 on o
ACOS . o oo e e 3 et
ACOSH 5 COTH.......o. 52
ACOT 5y CREAL.............. 43
ACOTH 5y CSC..iiii 52
AoSC 1 52
ACSCH . . oo 52
APPEND . . .o oot 2 D
ARC . oo 39
ASC oo 58 DATA..........ooo 30
ASEC . o oot 52 DATE.........ooii 34
ASECH........ouiiiiiiiiiiiii 52 DATEDMY.........oooovoiooiin 34
ASIN oo 51 DATEFMT...........ooooiiiii 34
ASINH. ..ottt 52 DEG.....cooiiii o0
AT oo 65 DELAY.......oooiiii 34
ATAN ..o 51 DELETE...........oooooiii 32
ATANZ . .ottt 51 DERIV...........oooooiiii 54
ATANH . .o 52 DETERM.............coooiiiiiiiin, 53
ATN o oo 51 DIFFEQN....................il, 54
DIM .o e e 24
DIR ..o 67
B DIRB .. oot 67
BALLOC . o o o oo 36 DIRD ... 67
11600 S 37 DIRE . ..ttt 67
BCS 58 DIRWALK..........ccoooeeeeeeiiinn, 48
BEEP . o o o oo 41 DISCLOSE. e 59
BGETC . o o oo e 47 DRAW . . 39
BIN o oo oo oo 58 DRAWPOLYot e 39
BLOAD . . o v eveee e e e e e 37
BPUTCH . . o oo, 47
BSAVE . .o\ oot e 37 E
BYE . oot 66 EMPTY ... 31
ENCLOSE . o v oeveee e e 59
C END . oot e 29
ENV . oo 35, 36
CAT o 64 ENVIRON ... 35, 36
CBS et 58 EOF .t 47
CD e e 67 ERA ..o 67
CDBL . o ot 43 ERASE. ... 30
CEIL . o o e e e 51 EXEC ..ttt e 35
CHAIN . .o oo e e 35 EXIST ..ot 46
CHART . . o v oo e e e e 39 EXIT oot 31, 66

Appendix H: Command Index

EXPRSEQ. . .o v ottt e 50
F

FILES . ..ottt 49
FIX oo 51
FLOOR. . oot e e 51
1300); 26
FORMAT ... oot e e 61
FRAC . ..ot 51
FRE . .ottt e 33
FREEFILEttt 45
GOSUB . . oot 25
GOTO . vt e 25
H

HELP . oottt e e e e 66
5120 QR 58
I

IF e 28, 29
INKEY . oo e e e e 65
INPUT oo e e 47, 65
INPUTH . .o oo e 47
INSERT . .o v oeeee e e 32
INSTR .o oot et 60
INT oo e e 51
INTERSECT . .o oeee e e 55
INVERSE . ..o voeee e e e 53
ISARRAY .. oot e 31
ISDIR ..ottt 47
ISFILE. .o\ttt e 47
ISLINK . .ot e e e e 47
ISNUMBER. . .. oot et 31
ISSTRING. .o eee e e 31
JOIN . oo e e e 62
JULIAN . oo oot e 34
K

KILL . oo oottt e e e e 48
LABEL . .ottt 25
15:1010)0) S 43
LCASE . .ottt e 58
LEFT . oottt 59
LEFTOF . ..ot 60
LEFTOFLAST . . ooeeee e e 60

89
LEN .« o e e 31
1y 24
LINE . .ottt e 40
LINE INPUT . oveee e 65
LINE INPUTH ..o 47
LINEINPUT . \ooooee e e 65
LINEINPUT# © . oo e 47
J581200) S 53
LINPUT . . oot e e e e e e e 65
LINPUTH . .o oot 47
LIST oot 66
LOAD . . oo e e e 67
LOCATE . . oot e 65
0] 48
LOG .o ettt e 52
LOGLO oo ve e e e 52
LOGPRINT . . .t voeee e e e e 36
LOWERo 58
LTRIM . o oo e e e e 58
M
MBAPPLY . ..ottt 56
MBIDENT . oo e e e 55
MBROTATE. . oo et 56
M3SCALE . oo oo e e 56
MBTRANS . o oo e e e 56
MALLOC . . oot et e e 36
U S 50
MERGEottt 67
MID e 60
MIN o 50
MKDIR ..o e e e 48
MYSQL.CONNECT . .+ v eee e 68
MYSQL.DBS ..ot 68
MYSQL.DISCONNECT ... oveeeeeeeeaeenn 68
MYSQL.FIELDS . ..ot 68
MYSQL.QUERY .« oo e 68
MYSQL.TABLES .. .o oeeeee et 68
MYSQL.USE ..ottt 68
N
NEW . . e 66
NOSOUND . . v eveee e e e e 42
10 S 67
O
11y 58
) 25
OPEN . . .ot 45

Appendix H: Command Index

P

PAINT . .o 40
PAUSE . . oottt e e e 44
PEEK[{16132}] 36
PEN oot 43
PLAY & o 41
3 10 39
POINT ..ottt e e e e e e 40
POKE[{16132}] ..o 37
POLYAREAottt 55
POLYEXT . ottt 55
110) [50
23231 64
PRINTH . ..ottt 47
PSET . . 40
PTDISTLNottt e e e 55
PTDISTSEG ..o vee e e et 55
PTSIGN . . ottt e 55
Q

QUIT . oo e e e 66
R

RAD . oottt 50
RANDOMIZE . ..ot 43
READ . ..o 30
READ . . oottt e 48
RECT . oot 40
REM . .o e 24
RENAME . . .ottt 48
3241110 67
REPEAT . ..ot 27
REPLACE . . .ottt 60
RESTOREot e 29
RETURN . . .ottt e 25
ROB .ottt e 41
ROBE . .o et 41
RIGHT . ..ottt e 59
RIGHTOFottt 60
RIGHTOFLAST ..ottt e 60
RINSTR . . oottt e e e e 60
RMDIR . . e 48
RND .ottt 43
3100 53
3101630 51
RTE . oot 33
RTRIM. ..ottt e e 58
RUN. .o 36, 66
S

SAVE . oot 67
SEARCH . .. oottt e 35
SEC . ottt 52
SECH . . oot e e 52
SEEK . oottt 48

90
SEEK# . . o e oo e e e 47
SEGCOS . - v et et 55
SEGLEN . ..o ovee et e 55
SEGSIN . v ettt 55
SEQ . v et e 50
SON e et 50
SIN . et 51
SINH . .ot 51
301210 61
0] 34
101011 42
SPACE . . e et 58
SPC . et 58
SPLIT . . ettt e e e 62
SPRINT . ..ottt 61
0] 50
SQUEEZE. . ..ot 59
STATMEAN . . . o e oo 53
STATMEANDEVo e 53
STATSPREADP . ..o 53
STATSPREADS . .. oo 53
STKDUMP e ee e e e 37
STOP . o v et 29
STR e v oottt 58
STRING . ..o et e 61
10 S 52
SUMSQ .« e ettt 53
SWAP . o v e e 44
T
TAN © oo 51
TANH .. oo e 51
TEXTHEIGHT . . ooee e e 40
TEXTWIDTH © ..o oveeeee e e 40
TICKS . .ot 33
TICKSPERSEC . ..o, 33
TIME .o oot e 33
TIMEHMS . oot 33
TIMER . oot e 33
TLOAD . .ot e e 46
TRANSLATE © ..o ooeeee e e 61
TRIM . oot e e e 59
b:0)) 36
by:10) 36
TSAVE . oo 46
TETH o oo e e e e e 40
TRTW o o oo e e e e e e 40
TYPE o oo et 67
U
191:1010)00) P 43
UCASE . oot e 58
UPPER . .« eveee e e e 58
USRCALL . . . oot e e e 37

Appendix H: Command Index

91
WINDOW. ..ot a1
WRITE# . ..o oo 48
X
KPOS ..ot 40

Appendix I: Variable Index 92

Appendix I Variable Index

B P
BPP .t 10 Pl 9
C S

SBVER . . v oot e 9
COMMANDot 10
CUD et e e 10

T
F TRUE .« ottt 10
FALSE . ..ot 10

V

VIDADR . ..ottt e 10
H
1501 10 X

XMAX o oo 10
O
OSNAME . .. oot 9 Y

	Introduction
	Welcome to SmallBASIC
	About BASIC
	About SmallBASIC
	Purpose
	Cross-platform

	Useful notes for beginners
	What we must already know
	How to read the syntax

	Running SB Interactively
	Running SB
	Unix script executables

	The language
	Constants and Variables
	Variable names
	About the dollar-symbol
	Integers
	Reals
	Strings
	Constants

	System Variables
	Operators
	Special Characters
	The OPTION keyword
	Run-Time
	Compile-Time

	Meta-commands
	Arrays and Matrices
	Nested arrays
	The operator IN
	The operator LIKE
	The pseudo-operator <<
	Subroutines and Functions
	Single-line Functions
	Nested procedures and functions
	Units (SB libraries)
	The pseudo-operators ++/--/p=
	The USE keyword
	The DO keyword

	Programming Tips
	Using LOCAL variables
	Loops and variables
	Loops and expressions

	Commands
	System
	Graphics & Sound
	The colors
	The points
	The STEP keyword
	The 'aspect' parameter
	The FILLED keyword
	Graphics Commands

	Miscellaneous
	File system
	Special Device Names
	File System Commands

	Mathematics
	Unit convertion
	Round
	Trigonometry
	Logarithms
	Statistics
	Equations

	2D Algebra
	2D & 3D graphics transformations

	Strings
	Console
	Supported console codes
	Console Commands

	Interactive Mode
	Interactive Mode Commands

	MySQL Module
	GDBM Module
	Limits
	Typical 32bit system
	PalmOS (Typical 16bit system)

	Writting Modules
	Variables API
	Gereric
	Real Numbers
	Integer Numbers
	Strings
	Arrays

	Typical Module Source
	Typical Module Makefile

	Glossary
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Command Index
	Variable Index

